Publication Search
Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn, M. S., Metzger, S., Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi, D., Bernacchi, C., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Bracho, R., Brown, S., Brunsell, N. A., Chen, J., Chen, X., Clark, K., Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A., Gough, C. M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., Ikawa, H., Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H., Kobayashi, H., Kolb, T., Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick, K., Oberbauer, S. F., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E., Prajapati, P., Prueger, J., Quinton, W. L., Richardson, A. D., Russell, E. S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C., Stuart-Haëntjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A., Ueyama, M., Vargas, R., Wood, J. D., Zona, D.
Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements …
Journal: Agricultural And Forest Meteorology, Volume 301-302: 108350 (2021), ISBN . DOI: 10.1016/j.agrformet.2021.108350 Sites: CA-ARB, CA-ARF, CA-Ca1, CA-Ca2, CA-Ca3, CA-Cbo, CA-DBB, CA-ER1, CA-Gro, CA-Let, CA-Man, CA-MR3, CA-MR5, CA-Na1, CA-NS1, CA-NS2, CA-NS3, CA-NS4, CA-NS5, CA-NS6, CA-NS7, CA-Oas, CA-Obs, CA-Ojp, CA-Qc2, CA-Qcu, CA-Qfo, CA-SCC, CA-SF1, CA-SF2, CA-SF3, CA-SJ2, CA-SJ3, CA-TP1, CA-TP3, CA-TP4, CA-TPD, CA-WP1, US-A03, US-A10, US-A32, US-A74, US-ADR, US-AR1, US-AR2, US-ARb, US-ARc, US-ARM, US-Aud, US-Bar, US-Bi1, US-Bi2, US-Bkg, US-Blk, US-Blo, US-Bn1, US-Bn2, US-Bn3, US-Bo1, US-Bo2, US-Br3, US-CaV, US-Ced, US-CF1, US-CF2, US-CF3, US-CF4, US-ChR, US-Cop, US-CPk, US-CRT, US-Ctn, US-Dia, US-Dix, US-Dk1, US-Dk2, US-Dk3, US-EDN, US-Elm, US-EML, US-Fmf, US-FPe, US-FR2, US-FR3, US-Fuf, US-Fwf, US-GLE, US-GMF, US-Goo, US-Ha1, US-Ha2, US-Hn2, US-Hn3, US-Ho1, US-Ho2, US-Ho3, US-IB1, US-IB2, US-Ivo, US-KFS, US-KLS, US-Kon, US-KS1, US-KS2, US-KUT, US-Lin, US-Los, US-LPH, US-LWW, US-Me1, US-Me2, US-Me3, US-Me4, US-Me5, US-Me6, US-MMS, US-MOz, US-Mpj, US-MRf, US-MtB, US-Myb, US-NC1, US-NC2, US-NC3, US-NC4, US-Ne1, US-Ne2, US-Ne3, US-NGB, US-NR1, US-Oho, US-ORv, US-PHM, US-Pon, US-Prr, US-RC1, US-RC2, US-RC3, US-RC4, US-RC5, US-Rls, US-Rms, US-Ro1, US-Ro2, US-Ro5, US-Ro6, US-Rpf, US-Rws, US-SdH, US-Seg, US-Ses, US-SFP, US-Shd, US-Skr, US-Slt, US-Snd, US-Sne, US-Snf, US-SO2, US-SO3, US-SO4, US-SP1, US-SP2, US-SP3, US-SRC, US-SRG, US-SRM, US-Srr, US-Sta, US-StJ, US-Syv, US-Ton, US-Tw1, US-Tw2, US-Tw3, US-Tw4, US-Tw5, US-Twt, US-Uaf, US-UMB, US-UMd, US-Var, US-Vcm, US-Vcp, US-Vcs, US-WBW, US-WCr, US-Wdn, US-Wgr, US-Whs, US-Wi0, US-Wi1, US-Wi3, US-Wi4, US-Wi5, US-Wi6, US-Wi7, US-Wi8, US-Wi9, US-Wjs, US-Wkg, US-Wlr, US-Wpp, US-WPT, US-Wrc, US-xBR, US-xCP, US-xDL, US-xHA, US-xKA, US-xKZ, US-xRM, US-xSR, US-xWD
Sullivan, R. C., Cook, D. R., Ghate, V. P., Kotamarthi, V. R., Feng, Y.
Evapotranspiration (ET) is a key component of the atmospheric and terrestrial water and energy budgets. Satellite‐based vegetation index approaches have used remotely sensed vegetation and reanalysis meteorological properties with surface energy balance models to estimate global ET (MOD16 ET). We reconstructed satellite retrievals …
Journal: Journal Of Geophysical Research: Biogeosciences, Volume 124 (2): 342-352 (2019), ISBN . DOI: 10.1029/2018JG004744 Sites: US-AR1, US-AR2, US-ARM, US-Blo, US-Cop, US-GLE, US-Ha1, US-Los, US-Me2, US-Me6, US-MMS, US-Myb, US-Ne1, US-Ne2, US-Ne3, US-NR1, US-ORv, US-PFa, US-SRG, US-SRM, US-Syv, US-Ton, US-Tw1, US-Tw2, US-Tw3, US-Tw4, US-Twt, US-UMB, US-UMd, US-Var, US-WCr, US-Whs, US-Wkg
Zhang, Q., Ficklin, D. L., Manzoni, S., Wang, L., Way, D., Phillips, R. P., Novick, K. A.
Journal: Environmental Research Letters, Volume 14 (7): 074023 (2019), ISBN . DOI: 10.1088/1748-9326/ab2603 Sites: CA-NS1, CA-NS2, CA-NS3, CA-NS4, CA-NS6, CA-NS7, US-AR1, US-AR2, US-ARM, US-Blo, US-GLE, US-KS2, US-Me2, US-MMS, US-Ne1, US-Ne2, US-Ne3, US-NR1, US-SRG, US-SRM, US-Syv, US-Ton, US-UMB, US-Var, US-WCr, US-Whs
Sullivan, R. C., Kotamarthi, V. R., Feng, Y.
Future projections of evapotranspiration (ET) are of critical importance for agricultural and freshwater management and for predicting land–atmosphere feedbacks on the climate system. However, ET from phase 5 of the Coupled Model Intercomparison Project (CMIP5) simulations exhibits substantial biases, bolstering little confidence …
Journal: Journal Of Hydrometeorology, Volume 20 (8): 1619-1633 (2019), ISBN . DOI: 10.1175/JHM-D-18-0259.1 Sites: US-AR1, US-AR2, US-ARM, US-Blo, US-Cop, US-GLE, US-Ha1, US-Los, US-Me2, US-Me6, US-MMS, US-Myb, US-Ne1, US-Ne2, US-Ne3, US-NR1, US-ORv, US-PFa, US-SRG, US-SRM, US-Syv, US-Ton, US-Tw1, US-Tw2, US-Tw3, US-Tw4, US-Twt, US-UMB, US-UMd, US-Var, US-WCr, US-Whs, US-Wkg
McCombs, A. G., Hiscox, A. L., Wang, C., Desai, A. R., Suyker, A. E., Biraud, S. C.
Carbon flux phenology is widely used to understand carbon flux dynamics and surface exchange processes. Vegetation phenology has been widely evaluated by remote sensors; however, very few studies have evaluated the use of vegetation phenology for identifying carbon flux phenology. Currently available techniques to derive net ecosystem …
Journal: Journal Of Atmospheric And Oceanic Technology, Volume 35 (4): 877-892 (2018), ISBN . DOI: https://doi.org/10.1175/JTECH-D-17-0004.1 Sites: US-ARM, US-Ne1, US-Ne2, US-Ne3, US-Ro1
Chu, H., Baldocchi, D. D., Poindexter, C., Abraha, M., Desai, A. R., Bohrer, G., Arain, M. A., Griffis, T., Blanken, P. D., O'Halloran, T. L., Thomas, R. Q., Zhang, Q., Burns, S. P., Frank, J. M., Christian, D., Brown, S., Black, T. A., Gough, C. M., Law, B. E., Lee, X., Chen, J., Reed, D. E., Massman, W. J., Clark, K., Hatfield, J., Prueger, J., Bracho, R., Baker, J. M., Martin, T. A.
Aerodynamic canopy height (ha) is the effective height of vegetation canopy for its influence on atmospheric fluxes and is a key parameter of surface‐atmosphere coupling. However, methods to estimate ha from data are limited. This synthesis evaluates the applicability and robustness of the calculation of ha from eddy covariance …
Journal: Geophysical Research Letters, Volume 45: 9275–9287 (2018), ISBN . DOI: 10.1029/2018GL079306 Sites: BR-Sa1, BR-Sa3, CA-Ca1, CA-Ca2, CA-Ca3, CA-Cbo, CA-ER1, CA-Gro, CA-Man, CA-NS1, CA-NS2, CA-NS3, CA-NS4, CA-NS5, CA-Oas, CA-Obs, CA-Ojp, CA-Qfo, CA-TP1, CA-TP3, CA-TP4, CA-TPD, US-Blo, US-Bn1, US-Bn2, US-Br1, US-Br3, US-Ced, US-CPk, US-CRT, US-Dix, US-Dk2, US-Dk3, US-Fmf, US-Fuf, US-GBT, US-GLE, US-GMF, US-Ha1, US-Ha2, US-Ho2, US-Ho3, US-IB1, US-IB2, US-KL1, US-KL2, US-KL3, US-KM1, US-KM2, US-KM3, US-KM4, US-Me2, US-Me3, US-Me4, US-Me5, US-Me6, US-MMS, US-MRf, US-NC1, US-NC2, US-Ne1, US-Ne2, US-Ne3, US-NR1, US-Oho, US-Prr, US-Ro1, US-Ro3, US-SB1, US-Shd, US-Skr, US-Slt, US-SP1, US-SP2, US-SP3, US-SRM, US-Srr, US-Syv, US-Ton, US-Tw3, US-Twt, US-UMB, US-UMd, US-Var, US-Vcm, US-WBW, US-Wi0, US-Wi1, US-Wi3, US-Wi4, US-Wi5, US-Wi8, US-Wi9, US-Wrc
Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G., Oishi, A., Papuga, S. A., Blanken, P. D., Noormets, A., Sulman, B. N., Scott, R. L., Wang, L., Phillips, R. P.
Journal: Nature Climate Change, Volume 6 (11): 1023-1027 (2016), ISBN . DOI: 10.1038/nclimate3114 Sites: US-ARM, US-Bar, US-Blk, US-Blo, US-Bo1, US-Br3, US-Dk1, US-Dk2, US-Dk3, US-Fmf, US-FR2, US-Fuf, US-GLE, US-IB1, US-IB2, US-KFS, US-Kon, US-KS2, US-Me1, US-Me2, US-MMS, US-MOz, US-MRf, US-Ne1, US-Ne3, US-NR1, US-Oho, US-SRG, US-SRM, US-Syv, US-Ton, US-UMB, US-Var, US-WBW, US-WCr, US-Whs, US-Wkg
Matheny, A. M., Bohrer, G., Stoy, P. C., Baker, I. T., Black, A. T., Desai, A. R., Dietze, M. C., Gough, C. M., Ivanov, V. Y., Jassal, R. S., Novick, K. A., Schäfer, K. V., Verbeeck, H.
Journal: Journal Of Geophysical Research: Biogeosciences, Volume 119 (7): 1458-1473 (2014), ISBN . DOI: 10.1002/2014JG002623 Sites: CA-Ca1, CA-Gro, CA-Let, CA-Oas, CA-Ojp, CA-Qfo, US-ARM, US-Dk3, US-Ha1, US-Ho1, US-IB2, US-Me2, US-MMS, US-MOz, US-Ne1, US-Ne2, US-Ne3, US-NR1, US-PFa, US-Syv, US-Ton, US-UMB, US-Var, US-WCr
Barr, A., Richardson, A., Hollinger, D., Papale, D., Arain, M., Black, T., Bohrer, G., Dragoni, D., Fischer, M., Gu, L., Law, B., Margolis, H., McCaughey, J., Munger, J., Oechel, W., Schaeffer, K.
Journal: Agricultural And Forest Meteorology, Volume 171-172: 31-45 (2013), ISBN . DOI: 10.1016/j.agrformet.2012.11.023 Sites: CA-Ca1, CA-Ca2, CA-Ca3, CA-Gro, CA-Let, CA-Mer, CA-NS1, CA-Oas, CA-Obs, CA-Ojp, CA-Qfo, CA-SJ1, CA-SJ2, CA-SJ3, CA-TP4, CA-WP1, US-ARM, US-Dk3, US-Ha1, US-Ho1, US-IB1, US-Los, US-Me3, US-Me5, US-MMS, US-MOz, US-Ne1, US-Ne2, US-Ne3, US-NR1, US-Shd, US-SO2, US-Syv, US-Ton, US-UMB, US-Var, US-WCr
Simbahan, G. C., Dobermann, A., Goovaerts, P., Ping, J., Haddix, M. L.
Our objective was to quantify the improvement in fine-resolution maps of soil organic carbon stock (CS, Mg C ha− 1) resulting from utilizing multivariate sources of secondary information. Different geostatistical techniques for mapping CS in the top 0.3 m of …
Journal: Geoderma, Volume 132 (3-4): 471-489 (2006), ISBN . DOI: 10.1016/j.geoderma.2005.07.001 Sites: US-Ne1, US-Ne2, US-Ne3