AmeriFlux Logo
Quick Sites: Sign in to Use
Tower_team:
PI: Andrew Richardson Andrew.Richardson@nau.edu - Northern Arizona University
FluxContact: David Hollinger dyhollinger@gmail.com - USDA Forest Service
Technician: Andrew Ouimette apouimette@gmail.com - USDA Forest Service
Lat, Long: 44.0646, -71.2881
Elevation(m): 272
Network Affiliations: AmeriFlux, Phenocam
Vegetation IGBP: DBF (Deciduous Broadleaf Forests: Lands dominated by woody vegetation with a percent cover >60% and height exceeding 2 meters. Consists of broadleaf tree communities with an annual cycle of leaf-on and leaf-off periods.)
Climate Koeppen: Dfb (Warm Summer Continental: significant precipitation in all seasons )
Mean Annual Temp (°C): 5.61
Mean Annual Precip. (mm): 1245.77
Flux Species Measured: CO2, H, H2O
Years Data Collected: 2004 - Present
Years Data Available:

AmeriFlux BASE 2004 - 2022   Data Citation

AmeriFlux FLUXNET 2004 - 2022   Data Citation

Data Use Policy:AmeriFlux CC-BY-4.0 Policy1
Description:
The Bartlett Experimental Forest (448170 N, 71830 W) is located within the White Mountains National Forest in north-central New Hampshire, USA. The 1050 ...
See MoreShow Less
URL: http://www.fs.fed.us/ne/durham/4155/bartlett.htm
Research Topics:
Acknowledgment: Research at the Bartlett Experimental Forest tower is supported by the USDA Forest Service's Northern Research Station and the National Science Foundation (grant DEB-1114804).
Site Tasks
  1. This site’s data can also be used under the more restrictive AmeriFlux Legacy Policy.
    The AmeriFlux Legacy Policy must be followed if this site’s data are combined with data from sites that require the AmeriFlux Legacy Policy.
Site Photo More Site Images
Image Credit:
Copyright preference: Request for permission
Site Publication More Site Publications
Ouimette, A. P., Ollinger, S. V., Richardson, A. D., Hollinger, D. Y., Keenan, T. F., Lepine, L. C., Vadeboncoeur, M. A. 2018. Carbon Fluxes And Interannual Drivers In A Temperate Forest Ecosystem Assessed Through Comparison Of Top-Down And Bottom-Up Approaches, Agricultural And Forest Meteorology, 256-257, 420-430.

Use the information below for citation of this site. See the Data Policy page for more details.

DOI(s) for citing US-Bar data

Data Use Policy: AmeriFlux CC-BY-4.0 License

This site’s data can also be used under the more restrictive AmeriFlux Legacy Policy.
The AmeriFlux Legacy Policy must be followed if US-Bar data are combined with data from sites that require the AmeriFlux Legacy Policy.

  • AmeriFlux BASE: https://doi.org/10.17190/AMF/1246030
    Citation: Andrew Richardson, David Hollinger (2023), AmeriFlux BASE US-Bar Bartlett Experimental Forest, Ver. 6-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246030
  • AmeriFlux FLUXNET: https://doi.org/10.17190/AMF/2006969
    Citation: Andrew Richardson, David Hollinger (2024), AmeriFlux FLUXNET-1F US-Bar Bartlett Experimental Forest, Ver. 4-6, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2006969

Find global FLUXNET datasets, like FLUXNET2015 and FLUXNET-CH4, and their citation information at fluxnet.org.

To cite BADM when downloaded on their own, use the publications below for citing site characterization. When using BADM that are downloaded with AmeriFlux BASE and AmeriFlux FLUXNET products, use the DOI citation for the associated data product.

Publication(s) for citing site characterization

Acknowledgments

Resources

This page displays the list of downloads of data for the site {{siteId}}.

Note: Results are the number of downloads to distinct data users. The Download Count column indicates the number of times the data user downloaded the data. The Version column refers to the version of the data product for the site that was downloaded by the data user.

Year Range

 Showing {{startItem + 1}} to {{(startItem + items) > filtered.length ? filtered.length : (startItem + items)}} of {{filtered.length}} results  Showing 0 to 0 of 0 results
Products :
';
Items Per Page:  
Date Name Data Product Version Intended Use Intended Use Description Download Count
{{dlObject.timeStamp}} {{dlObject.displayName}} {{displayProduct(dlObject.dataProduct)}} {{dlObject.version}} {{dlObject.intendedUse}} {{dlObject.comment}} {{dlObject.downloadCounter}}
No results to display
Date Name Data Product Vers. Intended Use Intended Use Description Download Count
{{dlObject.timeStamp}} {{dlObject.displayName}} {{displayProduct(dlObject.dataProduct)}} {{dlObject.version}} {{dlObject.intendedUse}} {{dlObject.comment}} {{dlObject.downloadCounter}}

 Showing {{startItem + 1}} to {{(startItem + items) > filtered.length ? filtered.length : (startItem + items)}} of {{filtered.length}} results

 Showing 0 to 0 of 0 results

Items Per Page:  

Not Found

Uh Oh. Something is missing. Try double checking the URL and try again.

Year Publication
2022 Teets, A., Moore, D. J., Alexander, M. R., Blanken, P. D., Bohrer, G., Burns, S. P., Carbone, M. S., Ducey, M. J., Fraver, S., Gough, C. M., Hollinger, D. Y., Koch, G., Kolb, T., Munger, J. W., Novick, K. A., Ollinger, S. V., Ouimette, A. P., Pederson, N., Ricciuto, D. M., Seyednasrollah, B., Vogel, C. S., Richardson, A. D. (2022) Coupling Of Tree Growth And Photosynthetic Carbon Uptake Across Six North American Forests, Journal Of Geophysical Research: Biogeosciences, 127(4), . https://doi.org/10.1029/2021JG006690
2020 Xu, B., Arain, M. A., Black, T. A., Law, B. E., Pastorello, G. Z., Chu, H. (2020) Seasonal Variability Of Forest Sensitivity To Heat And Drought Stresses: A Synthesis Based On Carbon Fluxes From North American Forest Ecosystems, Global Change Biology, 26(2), 901-918. https://doi.org/10.1111/gcb.14843
2021 Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn, M. S., Metzger, S., Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi, D., Bernacchi, C., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Bracho, R., Brown, S., Brunsell, N. A., Chen, J., Chen, X., Clark, K., Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A., Gough, C. M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., Ikawa, H., Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H., Kobayashi, H., Kolb, T., Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick, K., Oberbauer, S. F., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E., Prajapati, P., Prueger, J., Quinton, W. L., Richardson, A. D., Russell, E. S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C., Stuart-Haëntjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A., Ueyama, M., Vargas, R., Wood, J. D., Zona, D. (2021) Representativeness Of Eddy-Covariance Flux Footprints For Areas Surrounding Ameriflux Sites, Agricultural And Forest Meteorology, 301-302, 108350. https://doi.org/10.1016/j.agrformet.2021.108350
2018 Ouimette, A. P., Ollinger, S. V., Richardson, A. D., Hollinger, D. Y., Keenan, T. F., Lepine, L. C., Vadeboncoeur, M. A. (2018) Carbon Fluxes And Interannual Drivers In A Temperate Forest Ecosystem Assessed Through Comparison Of Top-Down And Bottom-Up Approaches, Agricultural And Forest Meteorology, 256-257, 420-430. https://doi.org/10.1016/j.agrformet.2018.03.017
2016 Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G., Oishi, A., Papuga, S. A., Blanken, P. D., Noormets, A., Sulman, B. N., Scott, R. L., Wang, L., Phillips, R. P. (2016) The Increasing Importance Of Atmospheric Demand For Ecosystem Water And Carbon Fluxes, Nature Climate Change, 6(11), 1023-1027. https://doi.org/10.1038/nclimate3114
2013 Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W., Schmid, H. P., Richardson, A. D. (2013) Increase In Forest Water-Use Efficiency As Atmospheric Carbon Dioxide Concentrations Rise, Nature, 499(7458), 324-327. https://doi.org/10.1038/nature12291
2019 Guerrieri, R., Belmecheri, S., Ollinger, S. V., Asbjornsen, H., Jennings, K., Xiao, J., Stocker, B. D., Martin, M., Hollinger, D. Y., Bracho-Garrillo, R., Clark, K., Dore, S., Kolb, T., Munger, J. W., Novick, K., Richardson, A. D. (2019) Disentangling The Role Of Photosynthesis And Stomatal Conductance On Rising Forest Water-Use Efficiency, Proceedings Of The National Academy Of Sciences, 116(34), 16909-16914. https://doi.org/10.1073/pnas.1905912116
2015 Toomey, M., Friedl, M. A., Frolking, S., Hufkens, K., Klosterman, S., Sonnentag, O., Baldocchi, D. D., Bernacchi, C. J., Biraud, S. C., Bohrer, G., Brzostek, E., Burns, S. P., Coursolle, C., Hollinger, D. Y., Margolis, H. A., McCaughey, H., Monson, R. K., Munger, J. W., Pallardy, S., Phillips, R. P., Torn, M. S., Wharton, S., Zeri, M., Richardson, A. D. (2015) Greenness Indices From Digital Cameras Predict The Timing And Seasonal Dynamics Of Canopy-Scale Photosynthesis, Ecological Applications, 25(1), 99-115. https://doi.org/http://doi.org/10.1890/14-0005.1
2018 Fer, I. and Kelly, R. and Moorcroft, P. R. and Richardson, A. D. and Cowdery, E. M. and Dietze, M. C. (2018) Linking Big Models To Big Data: Efficient Ecosystem Model Calibration Through Bayesian Model Emulation, Biogeosciences, 15(19), 5801-5830. https://doi.org/10.5194/bg-15-5801-2018
2018 Helliker, B. R., Song, X., Goulden, M. L., Clark, K., Bolstad, P., Munger, J. W., Chen, J., Noormets, A., Hollinger, D., Wofsy, S., Martin, T., Baldocchi, D., Euskirchenn, E., Desai, A., Burns, S. P. (2018) Assessing The Interplay Between Canopy Energy Balance And Photosynthesis With Cellulose δ18o: Large-Scale Patterns And Independent Ground-Truthing, Oecologia, . https://doi.org/10.1007/s00442-018-4198-z
2017 Porras, R. C., Hicks Pries, C. E., McFarlane, K. J., Hanson, P. J., Torn, M. S. (2017) Association With Pedogenic Iron And Aluminum: Effects On Soil Organic Carbon Storage And Stability In Four Temperate Forest Soils, Biogeochemistry, 133(3), 333-345. https://doi.org/10.1007/s10533-017-0337-6
2013 McFarlane, K. J., Torn, M. S., Hanson, P. J., Porras, R. C., Swanston, C. W., Callaham, M. A., Guilderson, T. P. (2013) Comparison Of Soil Organic Matter Dynamics At Five Temperate Deciduous Forests With Physical Fractionation And Radiocarbon Measurements, Biogeochemistry, 112(1-3), 457-476. https://doi.org/10.1007/s10533-012-9740-1
2007 Richardson, A. D., Jenkins, J. P., Braswell, B. H., Hollinger, D. Y., Ollinger, S. V., Smith, M. (2007) Use Of Digital Webcam Images To Track Spring Green-Up In A Deciduous Broadleaf Forest, Oecologia, 152(2), 323-334. https://doi.org/10.1007/s00442-006-0657-z
2002 Smith, M., Ollinger, S. V., Martin, M. E., Aber, J. D., Hallett, R. A., Goodale, C. L. (2002) Direct Estimation Of Aboveground Forest Productivity Through Hyperspectral Remote Sensing Of Canopy Nitrogen, Ecological Applications, 12(5), 1286-1302. https://doi.org/10.2307/3099972
2007 Jenkins, J., Richardson, A., Braswell, B., Ollinger, S., Hollinger, D., Smith, M. (2007) Refining Light-Use Efficiency Calculations For A Deciduous Forest Canopy Using Simultaneous Tower-Based Carbon Flux And Radiometric Measurements, Agricultural And Forest Meteorology, 143(1-2), 64-79. https://doi.org/10.1016/j.agrformet.2006.11.008
2005 Ollinger, S. V., Smith, M. (2005) Net Primary Production And Canopy Nitrogen In A Temperate Forest Landscape: An Analysis Using Imaging Spectroscopy, Modeling And Field Data, Ecosystems, 8(7), 760-778. https://doi.org/10.1007/s10021-005-0079-5
2016 Zscheischler, J., Fatichi, S., Wolf, S., Blanken, P., Bohrer, G., Clark, K., Desai, A., Hollinger, D., Keenan, T., Novick, K.A., Seneviratne, S.I. (2016) Short-term favorable weather conditions are an important control of interannual variability in carbon and water fluxes, Journal of Geophysical Research - Biogeosciences, 121(8), 2186-2198. https://doi.org/10.1002/2016JG003503
2016 Wolf, S., Keenan, T.F., Fisher, J.B., Baldocchi, D.D., Desai, A.R., Richardson, A.D., Scott, R.L., Law, B.E., Litvak, M.E., Brunsell, N.A., Peters, W., van der Laan-Luijkx, I.T. (2016) Warm spring reduced carbon cycle impact of the 2012 US summer drought, Proceedings of the National Academy of Sciences, 113(21), 5880-5885. https://doi.org/10.1073/pnas.1519620113

BADM for This Site

Access the Biological, Ancillary, Disturbance and Metadata (BADM) information and data for this site.

BADM contain information for many uses, such as characterizing a site’s vegetation and soil, describing disturbance history, and defining instrumentation for flux processing. They complement the flux/met data.

* Online updates are shown on the Overview tab real time. However, downloaded BADM files will not reflect those updates until they have been reviewed for QA/QC.

Wind Roses

Click an image below to enlarge it, or use the navigation panel.
  • Image scale: 729m x 729m
  • Data Collected:
  • Wind roses use variables ‘WS’ and ‘WD’.
    Download Data Download Wind Rose as Image File (PNG)

    Wind Speed (m/s)

  • Graph Type
  • Wind Speed Scale
  • Wind Direction Scale (%)
  • Show Satellite Image
  • Show Wind Rose
  • Annual Average
    About Ameriflux Wind Roses
    Wind Rose Explanation
    wind rose gives a succinct view of how wind speed and direction are typically distributed at a particular location. Presented in a circular format, a wind rose shows the frequency and intensity of winds blowing from particular directions. The length of each “spoke” around the circle indicates the amount of time (frequency) that the wind blows from a particular direction. Colors along the spokes indicate categories of wind speed (intensity). Each concentric circle represents a different frequency, emanating from zero at the center to increasing frequencies at the outer circles
    Utility
    This information can be useful to gain insight into regions surrounding a flux tower that contribute to the measured fluxes, and how those regions change in dependence of the time of day and season. The wind roses presented here are for four periods of the year, and in 16 cardinal directions. Graphics are available for all sites in the AmeriFlux network based on reported wind measurements at each site.
    Data from each site can be downloaded by clicking the ‘download’ button.
    Hover the cursor over a wind rose to obtain directions, speeds and intensities.
    Note that wind roses are not equivalent to flux footprints. Specifically, the term flux footprint describes an upwind area “seen” by the instruments measuring vertical turbulent fluxes, such that heat, water, gas and momentum transport generated in this area is registered by the instruments. Wind roses, on the other hand, identify only the direction and speed of wind.
    Where do these data come from?
    The wind roses are based on observed hourly data from the sites registered with the AmeriFlux Network.
    Parameters for AmeriFlux Wind Roses
    To use wind roses for a single AmeriFlux site, the following parameters may be most useful:
    • Wind Speed Scale: Per Site
    • Wind Direction Scale (%): Per Site
    To compare wind roses from more than one single AmeriFlux site, the following parameters may be most useful:
    • Wind Speed Scale: Non-Linear
    • Wind Direction Scale (%): AmeriFlux
    Mar - Jun; 6am - 6pm
    Mar - Jun; 6pm - 6am
    Jun - Sep; 6am - 6pm
    Jun - Sep; 6pm - 6am
    Sep - Dec; 6am - 6pm
    Sep - Dec; 6pm - 6am
    Dec - Mar; 6am - 6pm
    Dec - Mar; 6pm - 6am