AmeriFlux Logo
Quick Sites: Sign in to Use

US-EML: Eight Mile Lake Permafrost thaw gradient, Healy Alaska.

Tower_team:
PI: Ted Schuur ted.Schuur@nau.edu - University of Northern Arizona
FluxContact: Rosvel Bracho rbracho@ufl.edu - University of Florida
DataManager: Craig See Craig.See@nau.edu - Northern Arizona University
DataManager: Gerardo Celis gerardoc@uark.edu - University of Arkansas
DataManager: Heidi Rodenhizer hgr7@nau.edu - University of Northern Arizona
Technician: Justin Ledman justin.ledman@nau.edu - Northern Arizona University
Lat, Long: 63.8784, -149.2536
Elevation(m): 662
Network Affiliations: AmeriFlux, LTER
Vegetation IGBP: OSH (Open Shrublands: Lands with woody vegetation less than 2 meters tall and with shrub canopy cover between 10-60%. The shrub foliage can be either evergreen or deciduous.)
Climate Koeppen: ET (Tundra)
Mean Annual Temp (°C): -1
Mean Annual Precip. (mm): 378
Flux Species Measured: CO2, H, H2O, CH4
Years Data Collected: 2008 - Present
Years Data Available:

AmeriFlux BASE 2008 - 2020   Data Citation

AmeriFlux FLUXNET 2008 - 2020   Data Citation

Data Use Policy:AmeriFlux CC-BY-4.0 Policy1
Description: Tundra permafrost degrading
URL: http://www.biology.ufl.edu/ecosystemdynamics/research.html
Research Topics: CO2, CH4, H20 and heat fluxes fluxes in a permafrost thaw gradient
Acknowledgment:
Site Tasks
  1. This site’s data can also be used under the more restrictive AmeriFlux Legacy Policy.
    The AmeriFlux Legacy Policy must be followed if this site’s data are combined with data from sites that require the AmeriFlux Legacy Policy.
Site Photo More Site Images
Image Credit: Sebastien
Copyright preference: Request for permission
Site Publication More Site Publications

US-EML: Eight Mile Lake Permafrost thaw gradient, Healy Alaska.

Use the information below for citation of this site. See the Data Policy page for more details.

DOI(s) for citing US-EML data

Data Use Policy: AmeriFlux CC-BY-4.0 License

This site’s data can also be used under the more restrictive AmeriFlux Legacy Policy.
The AmeriFlux Legacy Policy must be followed if US-EML data are combined with data from sites that require the AmeriFlux Legacy Policy.

  • AmeriFlux BASE: https://doi.org/10.17190/AMF/1418678
    Citation: Rosvel Bracho, Gerardo Celis, Heidi Rodenhizer, Craig See, Edward A. Schuur (2021), AmeriFlux BASE US-EML Eight Mile Lake Permafrost thaw gradient, Healy Alaska., Ver. 4-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1418678
  • AmeriFlux FLUXNET: https://doi.org/10.17190/AMF/2007170
    Citation: Rosvel Bracho, Gerardo Celis, Heidi Rodenhizer, Craig See, Edward A. Schuur (2023), AmeriFlux FLUXNET-1F US-EML Eight Mile Lake Permafrost thaw gradient, Healy Alaska., Ver. 3-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2007170

Find global FLUXNET datasets, like FLUXNET2015 and FLUXNET-CH4, and their citation information at fluxnet.org.

To cite BADM when downloaded on their own, use the publications below for citing site characterization. When using BADM that are downloaded with AmeriFlux BASE and AmeriFlux FLUXNET products, use the DOI citation for the associated data product.

Publication(s) for citing site characterization

Acknowledgments

Resources

US-EML: Eight Mile Lake Permafrost thaw gradient, Healy Alaska.

This page displays the list of downloads of data for the site {{siteId}}.

Note: Results are the number of downloads to distinct data users. The Download Count column indicates the number of times the data user downloaded the data. The Version column refers to the version of the data product for the site that was downloaded by the data user.

Year Range

 Showing {{startItem + 1}} to {{(startItem + items) > filtered.length ? filtered.length : (startItem + items)}} of {{filtered.length}} results  Showing 0 to 0 of 0 results
Products :
';
Items Per Page:  
Date Name Data Product Version Intended Use Intended Use Description Download Count
{{dlObject.timeStamp}} {{dlObject.displayName}} {{displayProduct(dlObject.dataProduct)}} {{dlObject.version}} {{dlObject.intendedUse}} {{dlObject.comment}} {{dlObject.downloadCounter}}
No results to display
Date Name Data Product Vers. Intended Use Intended Use Description Download Count
{{dlObject.timeStamp}} {{dlObject.displayName}} {{displayProduct(dlObject.dataProduct)}} {{dlObject.version}} {{dlObject.intendedUse}} {{dlObject.comment}} {{dlObject.downloadCounter}}

 Showing {{startItem + 1}} to {{(startItem + items) > filtered.length ? filtered.length : (startItem + items)}} of {{filtered.length}} results

 Showing 0 to 0 of 0 results

Items Per Page:  

Not Found

Uh Oh. Something is missing. Try double checking the URL and try again.

US-EML: Eight Mile Lake Permafrost thaw gradient, Healy Alaska.

Year Publication
2022 Oehri, J., Schaepman-Strub, G., Kim, J., Grysko, R., Kropp, H., Grünberg, I., Zemlianskii, V., Sonnentag, O., Euskirchen, E. S., Reji Chacko, M., Muscari, G., Blanken, P. D., Dean, J. F., di Sarra, A., Harding, R. J., Sobota, I., Kutzbach, L., Plekhanova, E., Riihelä, A., Boike, J., Miller, N. B., Beringer, J., López-Blanco, E., Stoy, P. C., Sullivan, R. C., Kejna, M., Parmentier, F. W., Gamon, J. A., Mastepanov, M., Wille, C., Jackowicz-Korczynski, M., Karger, D. N., Quinton, W. L., Putkonen, J., van As, D., Christensen, T. R., Hakuba, M. Z., Stone, R. S., Metzger, S., Vandecrux, B., Frost, G. V., Wild, M., Hansen, B., Meloni, D., Domine, F., te Beest, M., Sachs, T., Kalhori, A., Rocha, A. V., Williamson, S. N., Morris, S., Atchley, A. L., Essery, R., Runkle, B. R., Holl, D., Riihimaki, L. D., Iwata, H., Schuur, E. A., Cox, C. J., Grachev, A. A., McFadden, J. P., Fausto, R. S., Göckede, M., Ueyama, M., Pirk, N., de Boer, G., Bret-Harte, M. S., Leppäranta, M., Steffen, K., Friborg, T., Ohmura, A., Edgar, C. W., Olofsson, J., Chambers, S. D. (2022) Vegetation Type Is An Important Predictor Of The Arctic Summer Land Surface Energy Budget, Nature Communications, 13(1), . https://doi.org/10.1038/s41467-022-34049-3
2021 Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn, M. S., Metzger, S., Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi, D., Bernacchi, C., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Bracho, R., Brown, S., Brunsell, N. A., Chen, J., Chen, X., Clark, K., Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A., Gough, C. M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., Ikawa, H., Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H., Kobayashi, H., Kolb, T., Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick, K., Oberbauer, S. F., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E., Prajapati, P., Prueger, J., Quinton, W. L., Richardson, A. D., Russell, E. S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C., Stuart-Haëntjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A., Ueyama, M., Vargas, R., Wood, J. D., Zona, D. (2021) Representativeness Of Eddy-Covariance Flux Footprints For Areas Surrounding Ameriflux Sites, Agricultural And Forest Meteorology, 301-302, 108350. https://doi.org/10.1016/j.agrformet.2021.108350
2012 Belshe, E. F., Schuur, E. A., Bolker, B. M., Bracho, R. (2012) Incorporating Spatial Heterogeneity Created By Permafrost Thaw Into A Landscape Carbon Estimate, Journal Of Geophysical Research: Biogeosciences, 117(G1), n/a-n/a. https://doi.org/10.1029/2011jg001836
2010 Lee, H., Schuur, E. A. G., Vogel, J. G. (2010) Soil CO2 Production In Upland Tundra Where Permafrost Is Thawing, Journal Of Geophysical Research: Biogeosciences, 115(G1), n/a-n/a. https://doi.org/10.1029/2008jg000906
2012 Trucco, C., Schuur, E. A., Natali, S. M., Belshe, E. F., Bracho, R., Vogel, J. (2012) Seven-Year Trends Of CO2 Exchange In A Tundra Ecosystem Affected By Long-Term Permafrost Thaw, Journal Of Geophysical Research: Biogeosciences, 117(G2), n/a-n/a. https://doi.org/10.1029/2011jg001907
2013 Hicks Pries, C. E., Schuur, E. A., Vogel, J. G., Natali, S. M. (2013) Moisture Drives Surface Decomposition In Thawing Tundra, Journal Of Geophysical Research: Biogeosciences, 118(3), 1133-1143. https://doi.org/10.1002/jgrg.20089
2013 Belshe, E. F., Schuur, E. A., Grosse, G. (2013) Quantification Of Upland Thermokarst Features With High Resolution Remote Sensing, Environmental Research Letters, 8(3), n/a-n/a. https://doi.org/10.1088/1748-9326/8/3/035016
2013 Hicks Pries, C. E., Schuur, E. A., Crummer, K. G. (2013) Thawing Permafrost Increases Old Soil And Autotrophic Respiration In Tundra: Partitioning Ecosystem Respiration Using δ13C And ∆14C, Global Change Biology, 19(2), 649-661. https://doi.org/10.1111/gcb.12058
2009 Vogel, J., Schuur, E. A. G., Trucco, C., Lee, H. (2009) Response Of CO2 Exchange In A Tussock Tundra Ecosystem To Permafrost Thaw And Thermokarst Development, Journal Of Geophysical Research: Biogeosciences, 114(G4), n/a-n/a. https://doi.org/10.1029/2008jg000901
2009 Schuur, E. A., Vogel, J. G., Crummer, K. G., Lee, H., Sickman, J. O., Osterkamp, T. E. (2009) The Effect Of Permafrost Thaw On Old Carbon Release And Net Carbon Exchange From Tundra, Nature, 459(7246), 556-559. https://doi.org/10.1038/nature08031
2007 Schuur, E. A., Crummer, K. G., Vogel, J. G., Mack, M. C. (2007) Plant Species Composition And Productivity Following Permafrost Thaw And Thermokarst In Alaskan Tundra, Ecosystems, 10(2), 280-292. https://doi.org/10.1007/s10021-007-9024-0
2012 Pries, C. E. H., Schuur, E. A., Crummer, K. G. (2012) Holocene Carbon Stocks And Carbon Accumulation Rates Altered In Soils Undergoing Permafrost Thaw, Ecosystems, 15(1), 162-173. https://doi.org/10.1007/s10021-011-9500-4

US-EML: Eight Mile Lake Permafrost thaw gradient, Healy Alaska.

BADM for This Site

Access the Biological, Ancillary, Disturbance and Metadata (BADM) information and data for this site.

BADM contain information for many uses, such as characterizing a site’s vegetation and soil, describing disturbance history, and defining instrumentation for flux processing. They complement the flux/met data.

* Online updates are shown on the Overview tab real time. However, downloaded BADM files will not reflect those updates until they have been reviewed for QA/QC.

US-EML: Eight Mile Lake Permafrost thaw gradient, Healy Alaska.

Wind Roses

Click an image below to enlarge it, or use the navigation panel.
  • Image scale: 447m x 447m
  • Data Collected:
  • Wind roses use variables ‘WS’ and ‘WD’.
    Download Data Download Wind Rose as Image File (PNG)

    Wind Speed (m/s)

  • Graph Type
  • Wind Speed Scale
  • Wind Direction Scale (%)
  • Show Satellite Image
  • Show Wind Rose
  • Annual Average
    About Ameriflux Wind Roses
    Wind Rose Explanation
    wind rose gives a succinct view of how wind speed and direction are typically distributed at a particular location. Presented in a circular format, a wind rose shows the frequency and intensity of winds blowing from particular directions. The length of each “spoke” around the circle indicates the amount of time (frequency) that the wind blows from a particular direction. Colors along the spokes indicate categories of wind speed (intensity). Each concentric circle represents a different frequency, emanating from zero at the center to increasing frequencies at the outer circles
    Utility
    This information can be useful to gain insight into regions surrounding a flux tower that contribute to the measured fluxes, and how those regions change in dependence of the time of day and season. The wind roses presented here are for four periods of the year, and in 16 cardinal directions. Graphics are available for all sites in the AmeriFlux network based on reported wind measurements at each site.
    Data from each site can be downloaded by clicking the ‘download’ button.
    Hover the cursor over a wind rose to obtain directions, speeds and intensities.
    Note that wind roses are not equivalent to flux footprints. Specifically, the term flux footprint describes an upwind area “seen” by the instruments measuring vertical turbulent fluxes, such that heat, water, gas and momentum transport generated in this area is registered by the instruments. Wind roses, on the other hand, identify only the direction and speed of wind.
    Where do these data come from?
    The wind roses are based on observed hourly data from the sites registered with the AmeriFlux Network.
    Parameters for AmeriFlux Wind Roses
    To use wind roses for a single AmeriFlux site, the following parameters may be most useful:
    • Wind Speed Scale: Per Site
    • Wind Direction Scale (%): Per Site
    To compare wind roses from more than one single AmeriFlux site, the following parameters may be most useful:
    • Wind Speed Scale: Non-Linear
    • Wind Direction Scale (%): AmeriFlux
    Mar - Jun; 6am - 6pm
    Mar - Jun; 6pm - 6am
    Jun - Sep; 6am - 6pm
    Jun - Sep; 6pm - 6am
    Sep - Dec; 6am - 6pm
    Sep - Dec; 6pm - 6am
    Dec - Mar; 6am - 6pm
    Dec - Mar; 6pm - 6am