AmeriFlux Logo
Quick Sites: Sign in to Use

US-Uaf: University of Alaska, Fairbanks

PI: Hiroki Iwata - Shinshu University
PI: Masahito Ueyama - Osaka Metropolitan University
PI: Yoshinobu Harazono - Osaka Prefecture University
Technician: Naoki Kukuu - Wood River Field Services (Contractor)
Lat, Long: 64.8663, -147.8555
Elevation(m): 155
Network Affiliations: AmeriFlux
Vegetation IGBP: ENF (Evergreen Needleleaf Forests: Lands dominated by woody vegetation with a percent cover >60% and height exceeding 2 meters. Almost all trees remain green all year. Canopy is never without green foliage.)
Climate Koeppen: Dwc (Subarctic: severe, dry winter, cool summer )
Mean Annual Temp (°C): -2.9
Mean Annual Precip. (mm): 263
Flux Species Measured: CO2, H, H2O, CH4
Years Data Collected: 2002 - Present
Years Data Available:

AmeriFlux BASE 2003 - 2023   Data Citation

Data Use Policy:AmeriFlux CC-BY-4.0 Policy1
Description: This tower is located near Smith Lake, University of Alaska, Fairbanks. The open black spruce is dominated on discontinuous permafrost.
Research Topics: Long-term monitoring energy & greenhouse gas fluxes under high-latitude climate change
Acknowledgment: Supported by Arctic Challenge for Sustainability (ArCS) project by the Ministry of Education, Culture, Sports, Science and Technology, Japan.
Site Tasks
  1. This site’s data can also be used under the more restrictive AmeriFlux Legacy Policy.
    The AmeriFlux Legacy Policy must be followed if this site’s data are combined with data from sites that require the AmeriFlux Legacy Policy.
Site Photo More Site Images
Image Credit:
Copyright preference: Open use
Site Publication More Site Publications

US-Uaf: University of Alaska, Fairbanks

Use the information below for citation of this site. See the Data Policy page for more details.

DOI(s) for citing US-Uaf data

Data Use Policy: AmeriFlux CC-BY-4.0 License

This site’s data can also be used under the more restrictive AmeriFlux Legacy Policy.
The AmeriFlux Legacy Policy must be followed if US-Uaf data are combined with data from sites that require the AmeriFlux Legacy Policy.

  • AmeriFlux BASE:
    Citation: Masahito Ueyama, Hiroki Iwata, Yoshinobu Harazono (2024), AmeriFlux BASE US-Uaf University of Alaska, Fairbanks, Ver. 12-5, AmeriFlux AMP, (Dataset).

To cite BADM when downloaded on their own, use the publications below for citing site characterization. When using BADM that are downloaded with AmeriFlux BASE and AmeriFlux FLUXNET products, use the DOI citation for the associated data product.

Publication(s) for citing site characterization



US-Uaf: University of Alaska, Fairbanks

This page displays the list of downloads of data for the site {{siteId}}.

Note: Results are the number of downloads to distinct data users. The Download Count column indicates the number of times the data user downloaded the data. The Version column refers to the version of the data product for the site that was downloaded by the data user.

Year Range

 Showing {{startItem + 1}} to {{(startItem + items) > filtered.length ? filtered.length : (startItem + items)}} of {{filtered.length}} results  Showing 0 to 0 of 0 results
Products :
Items Per Page:  
Date Name Data Product Version Intended Use Intended Use Description Download Count
{{dlObject.timeStamp}} {{dlObject.displayName}} {{displayProduct(dlObject.dataProduct)}} {{dlObject.version}} {{dlObject.intendedUse}} {{dlObject.comment}} {{dlObject.downloadCounter}}
No results to display
Date Name Data Product Vers. Intended Use Intended Use Description Download Count
{{dlObject.timeStamp}} {{dlObject.displayName}} {{displayProduct(dlObject.dataProduct)}} {{dlObject.version}} {{dlObject.intendedUse}} {{dlObject.comment}} {{dlObject.downloadCounter}}

 Showing {{startItem + 1}} to {{(startItem + items) > filtered.length ? filtered.length : (startItem + items)}} of {{filtered.length}} results

 Showing 0 to 0 of 0 results

Items Per Page:  

Not Found

Uh Oh. Something is missing. Try double checking the URL and try again.

US-Uaf: University of Alaska, Fairbanks

Year Publication
2021 Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn, M. S., Metzger, S., Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi, D., Bernacchi, C., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Bracho, R., Brown, S., Brunsell, N. A., Chen, J., Chen, X., Clark, K., Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A., Gough, C. M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., Ikawa, H., Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H., Kobayashi, H., Kolb, T., Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick, K., Oberbauer, S. F., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E., Prajapati, P., Prueger, J., Quinton, W. L., Richardson, A. D., Russell, E. S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C., Stuart-Haëntjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A., Ueyama, M., Vargas, R., Wood, J. D., Zona, D. (2021) Representativeness Of Eddy-Covariance Flux Footprints For Areas Surrounding Ameriflux Sites, Agricultural And Forest Meteorology, 301-302, 108350.
2020 Ueyama, M., Yamamori, T., Iwata, H., Harazono, Y. (2020) Cooling And Moistening Of The Planetary Boundary Layer In Interior Alaska Due To A Postfire Change In Surface Energy Exchange, Journal Of Geophysical Research: Atmospheres, 125(18), .
2018 Masahito UEYAMA, Narumi TAHARA, Hirohiko NAGANO, Naoki MAKITA, Hiroki IWATA, Yoshinobu HARAZONO (2018) Leaf- and ecosystem-scale photosynthetic parameters for the overstory and understory of boreal forests in interior Alaska, journal of Agricultural Meteorology, 74(2), 79-86.
2016 Ueyama, M., Tahara, N., Iwata, H., Euskirchen, E. S., Ikawa, H., Kobayashi, H., Nagano, H., Nakai, T., and Harazono, Y. (2016) Optimization of a biochemical model with eddy covariance measurements in black spruce forests of Alaska for estimating CO2 fertilization effects, Agric. Forest Meteorol., 222, 98-111.
2015 Iwata, H., Harazono, Y., Ueyama, M., Sakabe, A., Nagano H., Kosugi, Y., Takahashi, K., and Kim, Y. (2015) Methane exchange in a poorly-drained black spruce forest over permafrost observed using the eddy covariance technique, Agric. Forest Meteorol., 214-215, 157-168.
2015 Harazono, Y., Iwata, H., Sakabe, A., Ueyama, M., Takahashi, K., Nagano, H., Nakai, T., and Kosugi, Y. (2015) Effects of water vapor dilution on trace gas flux, and practical correction methods, J. Agric. Meteorol., 71, 65-76.
2014 Ueyama, M., Kudo, S., Iwama, C., Nagano, H., Kobayashi, H., Harazono, Y. and Yoshikawa, K. (2014) Does summer warming reduce black spruce productivity in interior Alaska?, J. Forest Res., 20, 52-59.
2014 Ueyama, M., Iwata, H., Harazono, Y. (2014) Autumn Warming Reduces The Co2sink Of A Black Spruce Forest In Interior Alaska Based On A Nine-Year Eddy Covariance Measurement, Global Change Biology, 20(4), 1161-1173.
2012 Iwata, H., Harazono, Y., and Ueyama, M. (2012) Sensitivity and offset changes of a fast-response open-path infrared gas analyzer during long-term observations in an Arctic environment, J. Agric. Meteorol., 68, 175-181.
2010 Ueyama, M., Harazono, Y., and Ichii, K. (2010) Satellite-based modeling of the carbon fluxes in mature black spruce forests in Alaska: a synthesis of the eddy covariance data and satellite remote sensing data, 2010, 14, 1-27.
2010 Iwata, H., Harazono, Y., and Ueyama, M. (2010) Influence of source/sink distributions on flux-gradient relationships in the roughtness sublayer over an open forest canopy under unstable conditions, Boundary Layer Meteorol., 136, 391-405.
2009 Ueyama, M., Harazono, Y., Kim, Y. and Tanaka, N. (2009) Response of the carbon cycle in sub-arctic black spruce forests to climate change: Reduction of a carbon sink related to the sensitivity of heterotrophic respiration., Agric. Forest Meteorol., 149, 582-602.
2009 Date, T., Ueyama. M., Harazono, Y., Ota, Y., Iwata, T. and Yamamoto, S. (2009) Satellite observations of decadal scale CO2 fluxes over black spruce forests in Alaska associated with climate variability., J. Agric. Meteorol., 65, 47-60.
2007 Kitamoto, T., Ueyama, M., Harazono, Y., Iwata, T. and Yamamoto, S. (2007) Applications of NOAA/AVHRR and observed fluxes to estimate regional carbon fluxes over black spruce forests in Alaska., J. Agric. Meteorol., 63, 171-183.
2012 Iwata, H., Harazono, Y., and Ueyama, M. (2012) The role of permafrost on water exchange of a black spruce forest in Interior Alaska, Agric. Forest Meteorol., 161(107-115), .
2007 Kim, Y., Ueyama, M., Nakagawa, F., Tsunogai, U., Harazono, Y. and Tanaka, N. (2007) Assessment of winter fluxes of CO2 and CH4 in boreal forest soils of central Alaska estimated by the profile method and the chamber method: A diagnosis of methane emission and implications for the regional carbon budget, Tellus, 59B, 223-233.
2006 Ueyama, M., Harazaono, Y., Okada, R., Nojiri, A., Ohtaki, E. and Miyata, A. (2006) Micrometeorological measurements of methane flux at a boreal forest in central Alaska, Mem. Natl Inst. Polar Res., Spec. Issue, 59, 156-167.
2006 Ueyama, M., Harazono, Y., Okada, R., Nojiri, A., Ohataki, E. and Miyata, A. (2006) Controlling factors on the inter-annual CO2 budget at a sub-arctic black spruce forest in interior Alaska, Tellus, 58B, 491-501.

US-Uaf: University of Alaska, Fairbanks

BADM for This Site

Access the Biological, Ancillary, Disturbance and Metadata (BADM) information and data for this site.

BADM contain information for many uses, such as characterizing a site’s vegetation and soil, describing disturbance history, and defining instrumentation for flux processing. They complement the flux/met data.

* Online updates are shown on the Overview tab real time. However, downloaded BADM files will not reflect those updates until they have been reviewed for QA/QC.

US-Uaf: University of Alaska, Fairbanks

Wind Roses

Click an image below to enlarge it, or use the navigation panel.
  • Image scale: 431m x 431m
  • Data Collected:
  • Wind roses use variables ‘WS’ and ‘WD’.
    Download Data Download Wind Rose as Image File (PNG)

    Wind Speed (m/s)

  • Graph Type
  • Wind Speed Scale
  • Wind Direction Scale (%)
  • Show Satellite Image
  • Show Wind Rose
  • Annual Average
    About Ameriflux Wind Roses
    Wind Rose Explanation
    wind rose gives a succinct view of how wind speed and direction are typically distributed at a particular location. Presented in a circular format, a wind rose shows the frequency and intensity of winds blowing from particular directions. The length of each “spoke” around the circle indicates the amount of time (frequency) that the wind blows from a particular direction. Colors along the spokes indicate categories of wind speed (intensity). Each concentric circle represents a different frequency, emanating from zero at the center to increasing frequencies at the outer circles
    This information can be useful to gain insight into regions surrounding a flux tower that contribute to the measured fluxes, and how those regions change in dependence of the time of day and season. The wind roses presented here are for four periods of the year, and in 16 cardinal directions. Graphics are available for all sites in the AmeriFlux network based on reported wind measurements at each site.
    Data from each site can be downloaded by clicking the ‘download’ button.
    Hover the cursor over a wind rose to obtain directions, speeds and intensities.
    Note that wind roses are not equivalent to flux footprints. Specifically, the term flux footprint describes an upwind area “seen” by the instruments measuring vertical turbulent fluxes, such that heat, water, gas and momentum transport generated in this area is registered by the instruments. Wind roses, on the other hand, identify only the direction and speed of wind.
    Where do these data come from?
    The wind roses are based on observed hourly data from the sites registered with the AmeriFlux Network.
    Parameters for AmeriFlux Wind Roses
    To use wind roses for a single AmeriFlux site, the following parameters may be most useful:
    • Wind Speed Scale: Per Site
    • Wind Direction Scale (%): Per Site
    To compare wind roses from more than one single AmeriFlux site, the following parameters may be most useful:
    • Wind Speed Scale: Non-Linear
    • Wind Direction Scale (%): AmeriFlux
    Mar - Jun; 6am - 6pm
    Mar - Jun; 6pm - 6am
    Jun - Sep; 6am - 6pm
    Jun - Sep; 6pm - 6am
    Sep - Dec; 6am - 6pm
    Sep - Dec; 6pm - 6am
    Dec - Mar; 6am - 6pm
    Dec - Mar; 6pm - 6am