AmeriFlux Logo
Quick Sites: Sign in to Use
Tower_team:
PI: Dennis Baldocchi Baldocchi@berkeley.edu - University of California, Berkeley
AncContact: Daphne Szutu daphneszutu@berkeley.edu - UC Berkeley
AncContact: Joe Verfaillie jverfail@berkeley.edu - University of California, Berkeley
FluxContact: Patty Oikwawa patty.oikawa@csueastbay.edu - Cal State East Bay, Hayward, CA
Lat, Long: 38.0366, -121.7540
Elevation(m): -5
Network Affiliations: AmeriFlux, Phenocam
Vegetation IGBP: GRA (Grasslands: Lands with herbaceous types of cover. Tree and shrub cover is less than 10%. Permanent wetlands lands with a permanent mixture of water and herbaceous or woody vegetation. The vegetation can be present in either salt, brackish, or fresh water.)
Climate Koeppen: Csa (Mediterranean: mild with dry, hot summer)
Mean Annual Temp (°C): 15.6
Mean Annual Precip. (mm): 358
Flux Species Measured: CO2, H2O, CH4
Years Data Collected: 2007 - 2015
Years Data Available:

AmeriFlux BASE 2007 - 2014   Data Citation

Data Use Policy:AmeriFlux CC-BY-4.0 Policy1
Description:
The Sherman Island site is a 38-ha peatland pasture, west of the Delta, that is owned by the state and managed by the California Department of Water Resources. ...
See MoreShow Less
URL: http://nature.berkeley.edu/biometlab/sites.php?tab=US-Snd
Research Topics:
The research approach of the University of California, Berkeley Biometeorology Laboratory involves the coordinated use of experimental measurements and ...
See MoreShow Less
Acknowledgment: Biometeorology Lab, University of California, Berkeley, PI: Dennis Baldocchi
Site Tasks
  1. This site’s data can also be used under the more restrictive AmeriFlux Legacy Policy.
    The AmeriFlux Legacy Policy must be followed if this site’s data are combined with data from sites that require the AmeriFlux Legacy Policy.
Site Photo More Site Images
Image Credit:
Copyright preference: Request for permission
Site Publication More Site Publications
Baldocchi, D., Detto, M., Sonnentag, O., Verfaillie, J., Teh, Y. A., Silver, W., Kelly, N. M. 2012. The Challenges Of Measuring Methane Fluxes And Concentrations Over A Peatland Pasture, Agricultural And Forest Meteorology, 153, 177-187.

Use the information below for citation of this site. See the Data Policy page for more details.

DOI(s) for citing US-Snd data

Data Use Policy: AmeriFlux CC-BY-4.0 License

This site’s data can also be used under the more restrictive AmeriFlux Legacy Policy.
The AmeriFlux Legacy Policy must be followed if US-Snd data are combined with data from sites that require the AmeriFlux Legacy Policy.

  • AmeriFlux BASE: https://doi.org/10.17190/AMF/1246094
    Citation: Matteo Detto, Cove Sturtevant, Patty Oikawa, Joseph Verfaillie, Dennis Baldocchi (2016), AmeriFlux BASE US-Snd Sherman Island, Ver. 2-1, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246094

To cite BADM when downloaded on their own, use the publications below for citing site characterization. When using BADM that are downloaded with AmeriFlux BASE and AmeriFlux FLUXNET products, use the DOI citation for the associated data product.

Publication(s) for citing site characterization

Acknowledgments

Resources

This page displays the list of downloads of data for the site {{siteId}}.

Note: Results are the number of downloads to distinct data users. The Download Count column indicates the number of times the data user downloaded the data. The Version column refers to the version of the data product for the site that was downloaded by the data user.

Year Range

 Showing {{startItem + 1}} to {{(startItem + items) > filtered.length ? filtered.length : (startItem + items)}} of {{filtered.length}} results  Showing 0 to 0 of 0 results
Products :
';
Items Per Page:  
Date Name Data Product Version Intended Use Intended Use Description Download Count
{{dlObject.timeStamp}} {{dlObject.displayName}} {{displayProduct(dlObject.dataProduct)}} {{dlObject.version}} {{dlObject.intendedUse}} {{dlObject.comment}} {{dlObject.downloadCounter}}
No results to display
Date Name Data Product Vers. Intended Use Intended Use Description Download Count
{{dlObject.timeStamp}} {{dlObject.displayName}} {{displayProduct(dlObject.dataProduct)}} {{dlObject.version}} {{dlObject.intendedUse}} {{dlObject.comment}} {{dlObject.downloadCounter}}

 Showing {{startItem + 1}} to {{(startItem + items) > filtered.length ? filtered.length : (startItem + items)}} of {{filtered.length}} results

 Showing 0 to 0 of 0 results

Items Per Page:  

Not Found

Uh Oh. Something is missing. Try double checking the URL and try again.

Year Publication
2021 Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn, M. S., Metzger, S., Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi, D., Bernacchi, C., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Bracho, R., Brown, S., Brunsell, N. A., Chen, J., Chen, X., Clark, K., Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A., Gough, C. M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., Ikawa, H., Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H., Kobayashi, H., Kolb, T., Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick, K., Oberbauer, S. F., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E., Prajapati, P., Prueger, J., Quinton, W. L., Richardson, A. D., Russell, E. S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C., Stuart-Haëntjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A., Ueyama, M., Vargas, R., Wood, J. D., Zona, D. (2021) Representativeness Of Eddy-Covariance Flux Footprints For Areas Surrounding Ameriflux Sites, Agricultural And Forest Meteorology, 301-302, 108350. https://doi.org/10.1016/j.agrformet.2021.108350
2019 Hemes, K. S., Chamberlain, S. D., Eichelmann, E., Anthony, T., Valach, A., Kasak, K., Szutu, D., Verfaillie, J., Silver, W. L., Baldocchi, D. D. (2019) Assessing The Carbon And Climate Benefit Of Restoring Degraded Agricultural Peat Soils To Managed Wetlands, Agricultural And Forest Meteorology, 268, 202-214. https://doi.org/10.1016/j.agrformet.2019.01.017
2018 Baldocchi, D., Penuelas, J. (2018) The Physics And Ecology Of Mining Carbon Dioxide From The Atmosphere By Ecosystems, Global Change Biology, . https://doi.org/10.1111/gcb.14559
2018 Eichelmann, E., Hemes, K. S., Knox, S. H., Oikawa, P. Y., Chamberlain, S. D., Sturtevant, C., Verfaillie, J., Baldocchi, D. D. (2018) The Effect Of Land Cover Type And Structure On Evapotranspiration From Agricultural And Wetland Sites In The Sacramento–San Joaquin River Delta, California, Agricultural And Forest Meteorology, 256-257, 179-195. https://doi.org/10.1016/j.agrformet.2018.03.007
2017 Chamberlain, S. D., Verfaillie, J., Eichelmann, E., Hemes, K. S., Baldocchi, D. D. (2017) Evaluation Of Density Corrections To Methane Fluxes Measured By Open-Path Eddy Covariance Over Contrasting Landscapes, Boundary-Layer Meteorology, . https://doi.org/10.1007/s10546-017-0275-9
2011 Sonnentag, O., Detto, M., Runkle, B. R. K., Teh, Y. A., Silver, W. L., Kelly, M., Baldocchi, D. D. (2011) Carbon Dioxide Exchange Of A Pepperweed ( Lepidium Latifolium L.) Infestation: How Do Flowering And Mowing Affect Canopy Photosynthesis And Autotrophic Respiration?, Journal Of Geophysical Research, 116(G1), n/a-n/a. https://doi.org/10.1029/2010jg001522
2011 Sonnentag, O., Detto, M., Vargas, R., Ryu, Y., Runkle, B., Kelly, M., Baldocchi, D. (2011) Tracking The Structural And Functional Development Of A Perennial Pepperweed (Lepidium Latifolium L.) Infestation Using A Multi-Year Archive Of Webcam Imagery And Eddy Covariance Measurements, Agricultural And Forest Meteorology, 151(7), 916-926. https://doi.org/10.1016/j.agrformet.2011.02.011
2011 Detto, M., Verfaillie, J., Anderson, F., Xu, L., Baldocchi, D. (2011) Comparing Laser-Based Open- And Closed-Path Gas Analyzers To Measure Methane Fluxes Using The Eddy Covariance Method, Agricultural And Forest Meteorology, 151(10), 1312-1324. https://doi.org/10.1016/j.agrformet.2011.05.014
2011 Teh, Y. A., Silver, W. L., Sonnentag, O., Detto, M., Kelly, M., Baldocchi, D. D. (2011) Large Greenhouse Gas Emissions From A Temperate Peatland Pasture, Ecosystems, 14(2), 311-325. https://doi.org/10.1007/s10021-011-9411-4
2012 Hatala, J. A., Detto, M., Sonnentag, O., Deverel, S. J., Verfaillie, J., Baldocchi, D. D. (2012) Greenhouse Gas (CO2, CH4, H2O) Fluxes From Drained And Flooded Agricultural Peatlands In The Sacramento-San Joaquin Delta, Agriculture, Ecosystems & Environment, 150, 1-18. https://doi.org/10.1016/j.agee.2012.01.009
2012 Baldocchi, D., Detto, M., Sonnentag, O., Verfaillie, J., Teh, Y. A., Silver, W., Kelly, N. M. (2012) The Challenges Of Measuring Methane Fluxes And Concentrations Over A Peatland Pasture, Agricultural And Forest Meteorology, 153, 177-187. https://doi.org/10.1016/j.agrformet.2011.04.013
2010 Detto, M., Baldocchi, D., Katul, G. G. (2010) Scaling Properties Of Biologically Active Scalar Concentration Fluctuations In The Atmospheric Surface Layer Over A Managed Peatland, Boundary-Layer Meteorology, 136(3), 407-430. https://doi.org/10.1007/s10546-010-9514-z
2012 Ma, S., Baldocchi, D. D., Hatala, J. A., Detto, M., Curiel Yuste, J. (2012) Are Rain-Induced Ecosystem Respiration Pulses Enhanced By Legacies Of Antecedent Photodegradation In Semi-Arid Environments?, Agricultural And Forest Meteorology, 154-155, 203-213. https://doi.org/10.1016/j.agrformet.2011.11.007
2014 Knox, S. H.,, Sturtevant, C., Matthes, J.H., Koteen, L., Verfaillie,J., Baldocchi. D. (2014) Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta, Global Change Biology, 21, 750-765. https://doi.org/10.1111/gcb.12745

BADM for This Site

Access the Biological, Ancillary, Disturbance and Metadata (BADM) information and data for this site.

BADM contain information for many uses, such as characterizing a site’s vegetation and soil, describing disturbance history, and defining instrumentation for flux processing. They complement the flux/met data.

* Online updates are shown on the Overview tab real time. However, downloaded BADM files will not reflect those updates until they have been reviewed for QA/QC.

Wind Roses

Click an image below to enlarge it, or use the navigation panel.
  • Image scale: 799m x 799m
  • Data Collected:
  • Wind roses use variables ‘WS’ and ‘WD’.
    Download Data Download Wind Rose as Image File (PNG)

    Wind Speed (m/s)

  • Graph Type
  • Wind Speed Scale
  • Wind Direction Scale (%)
  • Show Satellite Image
  • Show Wind Rose
  • Annual Average
    About Ameriflux Wind Roses
    Wind Rose Explanation
    wind rose gives a succinct view of how wind speed and direction are typically distributed at a particular location. Presented in a circular format, a wind rose shows the frequency and intensity of winds blowing from particular directions. The length of each “spoke” around the circle indicates the amount of time (frequency) that the wind blows from a particular direction. Colors along the spokes indicate categories of wind speed (intensity). Each concentric circle represents a different frequency, emanating from zero at the center to increasing frequencies at the outer circles
    Utility
    This information can be useful to gain insight into regions surrounding a flux tower that contribute to the measured fluxes, and how those regions change in dependence of the time of day and season. The wind roses presented here are for four periods of the year, and in 16 cardinal directions. Graphics are available for all sites in the AmeriFlux network based on reported wind measurements at each site.
    Data from each site can be downloaded by clicking the ‘download’ button.
    Hover the cursor over a wind rose to obtain directions, speeds and intensities.
    Note that wind roses are not equivalent to flux footprints. Specifically, the term flux footprint describes an upwind area “seen” by the instruments measuring vertical turbulent fluxes, such that heat, water, gas and momentum transport generated in this area is registered by the instruments. Wind roses, on the other hand, identify only the direction and speed of wind.
    Where do these data come from?
    The wind roses are based on observed hourly data from the sites registered with the AmeriFlux Network.
    Parameters for AmeriFlux Wind Roses
    To use wind roses for a single AmeriFlux site, the following parameters may be most useful:
    • Wind Speed Scale: Per Site
    • Wind Direction Scale (%): Per Site
    To compare wind roses from more than one single AmeriFlux site, the following parameters may be most useful:
    • Wind Speed Scale: Non-Linear
    • Wind Direction Scale (%): AmeriFlux
    Mar - Jun; 6am - 6pm
    Mar - Jun; 6pm - 6am
    Jun - Sep; 6am - 6pm
    Jun - Sep; 6pm - 6am
    Sep - Dec; 6am - 6pm
    Sep - Dec; 6pm - 6am
    Dec - Mar; 6am - 6pm
    Dec - Mar; 6pm - 6am