AmeriFlux Logo
Quick Sites: Sign in to Use

US-AR1: ARM USDA UNL OSU Woodward Switchgrass 1

Tower_team:
PI: Dave Billesbach dbillesbach1@unl.edu - University of Nebraska
PI: Margaret Torn mstorn@lbl.gov - Lawerence Berkeley National Lab
Lat, Long: 36.4267, -99.4200
Elevation(m): 611
Network Affiliations: AmeriFlux
Vegetation IGBP: GRA (Grasslands: Lands with herbaceous types of cover. Tree and shrub cover is less than 10%. Permanent wetlands lands with a permanent mixture of water and herbaceous or woody vegetation. The vegetation can be present in either salt, brackish, or fresh water.)
Climate Koeppen: Dsa (Dry Continental: hot summer)
Mean Annual Temp (°C):
Mean Annual Precip. (mm):
Flux Species Measured: CO2, H, H2O
Years Data Collected: 2009 - 2012
Years Data Available:

AmeriFlux BASE 2009 - 2012   Data Citation

AmeriFlux FLUXNET 2009 - 2012   Data Citation

Data Use Policy:AmeriFlux CC-BY-4.0 Policy1
Description:
The ARM USDA UNL OSU Woodward Switchgrass 1 tower is located on public land owned by the USDA-ARS Southern Plains Range Research Station in Woodward, Oklahoma. ...
See MoreShow Less
URL: http://www.arm.gov/sites/sgp
Research Topics:
The research focus of the ARM USDA UNL OSU Woodward Switchgrass 1 site is to investigate the effects of land use conversion from mixed prairie and old ...
See MoreShow Less
Acknowledgment:
Site Tasks
  1. This site’s data can also be used under the more restrictive AmeriFlux Legacy Policy.
    The AmeriFlux Legacy Policy must be followed if this site’s data are combined with data from sites that require the AmeriFlux Legacy Policy.
Site Photo More Site Images
Image Credit:
Copyright preference: Request for permission
Site Publication More Site Publications

US-AR1: ARM USDA UNL OSU Woodward Switchgrass 1

Use the information below for citation of this site. See the Data Policy page for more details.

DOI(s) for citing US-AR1 data

Data Use Policy: AmeriFlux CC-BY-4.0 License

This site’s data can also be used under the more restrictive AmeriFlux Legacy Policy.
The AmeriFlux Legacy Policy must be followed if US-AR1 data are combined with data from sites that require the AmeriFlux Legacy Policy.

  • AmeriFlux BASE: https://doi.org/10.17190/AMF/1246137
    Citation: Dave Billesbach, James Bradford, Margaret Torn (2019), AmeriFlux BASE US-AR1 ARM USDA UNL OSU Woodward Switchgrass 1, Ver. 3-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246137
  • AmeriFlux FLUXNET: https://doi.org/10.17190/AMF/2006965
    Citation: Dave Billesbach, James Bradford, Margaret Torn (2024), AmeriFlux FLUXNET-1F US-AR1 ARM USDA UNL OSU Woodward Switchgrass 1, Ver. 4-6, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2006965

Find global FLUXNET datasets, like FLUXNET2015 and FLUXNET-CH4, and their citation information at fluxnet.org.

To cite BADM when downloaded on their own, use the publications below for citing site characterization. When using BADM that are downloaded with AmeriFlux BASE and AmeriFlux FLUXNET products, use the DOI citation for the associated data product.

Publication(s) for citing site characterization

Acknowledgments

Resources

US-AR1: ARM USDA UNL OSU Woodward Switchgrass 1

This page displays the list of downloads of data for the site {{siteId}}.

Note: Results are the number of downloads to distinct data users. The Download Count column indicates the number of times the data user downloaded the data. The Version column refers to the version of the data product for the site that was downloaded by the data user.

Year Range

 Showing {{startItem + 1}} to {{(startItem + items) > filtered.length ? filtered.length : (startItem + items)}} of {{filtered.length}} results  Showing 0 to 0 of 0 results
Products :
';
Items Per Page:  
Date Name Data Product Version Intended Use Intended Use Description Download Count
{{dlObject.timeStamp}} {{dlObject.displayName}} {{displayProduct(dlObject.dataProduct)}} {{dlObject.version}} {{dlObject.intendedUse}} {{dlObject.comment}} {{dlObject.downloadCounter}}
No results to display
Date Name Data Product Vers. Intended Use Intended Use Description Download Count
{{dlObject.timeStamp}} {{dlObject.displayName}} {{displayProduct(dlObject.dataProduct)}} {{dlObject.version}} {{dlObject.intendedUse}} {{dlObject.comment}} {{dlObject.downloadCounter}}

 Showing {{startItem + 1}} to {{(startItem + items) > filtered.length ? filtered.length : (startItem + items)}} of {{filtered.length}} results

 Showing 0 to 0 of 0 results

Items Per Page:  

Not Found

Uh Oh. Something is missing. Try double checking the URL and try again.

US-AR1: ARM USDA UNL OSU Woodward Switchgrass 1

Year Publication
2021 Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn, M. S., Metzger, S., Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi, D., Bernacchi, C., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Bracho, R., Brown, S., Brunsell, N. A., Chen, J., Chen, X., Clark, K., Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A., Gough, C. M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., Ikawa, H., Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H., Kobayashi, H., Kolb, T., Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick, K., Oberbauer, S. F., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E., Prajapati, P., Prueger, J., Quinton, W. L., Richardson, A. D., Russell, E. S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C., Stuart-Haëntjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A., Ueyama, M., Vargas, R., Wood, J. D., Zona, D. (2021) Representativeness Of Eddy-Covariance Flux Footprints For Areas Surrounding Ameriflux Sites, Agricultural And Forest Meteorology, 301-302, 108350. https://doi.org/10.1016/j.agrformet.2021.108350
2019 Zhang, Q., Ficklin, D. L., Manzoni, S., Wang, L., Way, D., Phillips, R. P., Novick, K. A. (2019) Response Of Ecosystem Intrinsic Water Use Efficiency And Gross Primary Productivity To Rising Vapor Pressure Deficit, Environmental Research Letters, 14(7), 074023. https://doi.org/10.1088/1748-9326/ab2603
2019 Sullivan, R. C., Kotamarthi, V. R., Feng, Y. (2019) Recovering Evapotranspiration Trends From Biased CMIP5 Simulations And Sensitivity To Changing Climate Over North America, Journal Of Hydrometeorology, 20(8), 1619-1633. https://doi.org/10.1175/JHM-D-18-0259.1
2019 Sullivan, R. C., Cook, D. R., Ghate, V. P., Kotamarthi, V. R., Feng, Y. (2019) Improved Spatiotemporal Representativeness And Bias Reduction Of Satellite-Based Evapotranspiration Retrievals Via Use Of In Situ Meteorology And Constrained Canopy Surface Resistance, Journal Of Geophysical Research: Biogeosciences, 124(2), 342-352. https://doi.org/10.1029/2018JG004744
2018 Baldocchi, D., Penuelas, J. (2018) The Physics And Ecology Of Mining Carbon Dioxide From The Atmosphere By Ecosystems, Global Change Biology, . https://doi.org/10.1111/gcb.14559

US-AR1: ARM USDA UNL OSU Woodward Switchgrass 1

BADM for This Site

Access the Biological, Ancillary, Disturbance and Metadata (BADM) information and data for this site.

BADM contain information for many uses, such as characterizing a site’s vegetation and soil, describing disturbance history, and defining instrumentation for flux processing. They complement the flux/met data.

* Online updates are shown on the Overview tab real time. However, downloaded BADM files will not reflect those updates until they have been reviewed for QA/QC.

US-AR1: ARM USDA UNL OSU Woodward Switchgrass 1

Wind Roses

Click an image below to enlarge it, or use the navigation panel.
  • Image scale: 817m x 817m
  • Data Collected:
  • Wind roses use variables ‘WS’ and ‘WD’.
    Download Data Download Wind Rose as Image File (PNG)

    Wind Speed (m/s)

  • Graph Type
  • Wind Speed Scale
  • Wind Direction Scale (%)
  • Show Satellite Image
  • Show Wind Rose
  • Annual Average
    About Ameriflux Wind Roses
    Wind Rose Explanation
    wind rose gives a succinct view of how wind speed and direction are typically distributed at a particular location. Presented in a circular format, a wind rose shows the frequency and intensity of winds blowing from particular directions. The length of each “spoke” around the circle indicates the amount of time (frequency) that the wind blows from a particular direction. Colors along the spokes indicate categories of wind speed (intensity). Each concentric circle represents a different frequency, emanating from zero at the center to increasing frequencies at the outer circles
    Utility
    This information can be useful to gain insight into regions surrounding a flux tower that contribute to the measured fluxes, and how those regions change in dependence of the time of day and season. The wind roses presented here are for four periods of the year, and in 16 cardinal directions. Graphics are available for all sites in the AmeriFlux network based on reported wind measurements at each site.
    Data from each site can be downloaded by clicking the ‘download’ button.
    Hover the cursor over a wind rose to obtain directions, speeds and intensities.
    Note that wind roses are not equivalent to flux footprints. Specifically, the term flux footprint describes an upwind area “seen” by the instruments measuring vertical turbulent fluxes, such that heat, water, gas and momentum transport generated in this area is registered by the instruments. Wind roses, on the other hand, identify only the direction and speed of wind.
    Where do these data come from?
    The wind roses are based on observed hourly data from the sites registered with the AmeriFlux Network.
    Parameters for AmeriFlux Wind Roses
    To use wind roses for a single AmeriFlux site, the following parameters may be most useful:
    • Wind Speed Scale: Per Site
    • Wind Direction Scale (%): Per Site
    To compare wind roses from more than one single AmeriFlux site, the following parameters may be most useful:
    • Wind Speed Scale: Non-Linear
    • Wind Direction Scale (%): AmeriFlux
    Mar - Jun; 6am - 6pm
    Mar - Jun; 6pm - 6am
    Jun - Sep; 6am - 6pm
    Jun - Sep; 6pm - 6am
    Sep - Dec; 6am - 6pm
    Sep - Dec; 6pm - 6am
    Dec - Mar; 6am - 6pm
    Dec - Mar; 6pm - 6am