AmeriFlux Logo
Quick Sites: Sign in to Use
PI: Christopher Gough - Virginia Commonwealth University
PI: Gil Bohrer - Ohio State University
PI: Luke Nave - University of Michigan
Lat, Long: 45.5625, -84.6975
Elevation(m): 239
Network Affiliations: AmeriFlux, Phenocam
Vegetation IGBP: DBF (Deciduous Broadleaf Forests: Lands dominated by woody vegetation with a percent cover >60% and height exceeding 2 meters. Consists of broadleaf tree communities with an annual cycle of leaf-on and leaf-off periods.)
Climate Koeppen: Dfb (Warm Summer Continental: significant precipitation in all seasons )
Mean Annual Temp (°C): 5.83
Mean Annual Precip. (mm): 803
Flux Species Measured: H, H2O, CO2
Years Data Collected: 2007 - Present
Years Data Available:

AmeriFlux BASE 2007 - 2021   Data Citation

AmeriFlux FLUXNET 2007 - 2021   Data Citation

Data Use Policy:AmeriFlux CC-BY-4.0 Policy1
The UMBS Disturbance site is an artificial disturbance site that has recently been created as part of the Forest Accelerate Succession ExperimenT (FASET). ...
See MoreShow Less
Research Topics:
The research objectives of the University of Michigan Biological Station are to address questions of ecosystem/atmosphere linkages that are general in ...
See MoreShow Less
Site Tasks
  1. This site’s data can also be used under the more restrictive AmeriFlux Legacy Policy.
    The AmeriFlux Legacy Policy must be followed if this site’s data are combined with data from sites that require the AmeriFlux Legacy Policy.
Site Photo More Site Images
Image Credit: Christopher Gough, 07/01/2012
Copyright preference: Open use
Site Publication More Site Publications
Gough, C. M., Hardiman, B. S., Nave, L. E., Bohrer, G., Maurer, K. D., Vogel, C. S., Nadelhoffer, K. J., Curtis, P. S. 2013. Sustained Carbon Uptake And Storage Following Moderate Disturbance In A Great Lakes Forest, Ecological Applications, 23:5, 1202-1215.

Use the information below for citation of this site. See the Data Policy page for more details.

DOI(s) for citing US-UMd data

Data Use Policy: AmeriFlux CC-BY-4.0 License

This site’s data can also be used under the more restrictive AmeriFlux Legacy Policy.
The AmeriFlux Legacy Policy must be followed if US-UMd data are combined with data from sites that require the AmeriFlux Legacy Policy.

  • AmeriFlux BASE:
    Citation: Christopher Gough, Gil Bohrer, Peter Curtis (2022), AmeriFlux BASE US-UMd UMBS Disturbance, Ver. 12-5, AmeriFlux AMP, (Dataset).
  • AmeriFlux FLUXNET:
    Citation: Christopher Gough, Gil Bohrer, Peter Curtis (2022), AmeriFlux FLUXNET-1F US-UMd UMBS Disturbance, Ver. 3-5, AmeriFlux AMP, (Dataset).

Find global FLUXNET datasets, like FLUXNET2015 and FLUXNET-CH4, and their citation information at

To cite BADM when downloaded on their own, use the publications below for citing site characterization. When using BADM that are downloaded with AmeriFlux BASE and AmeriFlux FLUXNET products, use the DOI citation for the associated data product.

Publication(s) for citing site characterization



This page displays the list of downloads of data for the site {{siteId}}.

Note: Results are the number of downloads to distinct data users. The Download Count column indicates the number of times the data user downloaded the data. The Version column refers to the version of the data product for the site that was downloaded by the data user.

Year Range

 Showing {{startItem + 1}} to {{(startItem + items) > filtered.length ? filtered.length : (startItem + items)}} of {{filtered.length}} results  Showing 0 to 0 of 0 results
Products :
Items Per Page:  
Date Name Data Product Version Intended Use Intended Use Description Download Count
{{dlObject.timeStamp}} {{dlObject.displayName}} {{displayProduct(dlObject.dataProduct)}} {{dlObject.version}} {{dlObject.intendedUse}} {{dlObject.comment}} {{dlObject.downloadCounter}}
No results to display
Date Name Data Product Vers. Intended Use Intended Use Description Download Count
{{dlObject.timeStamp}} {{dlObject.displayName}} {{displayProduct(dlObject.dataProduct)}} {{dlObject.version}} {{dlObject.intendedUse}} {{dlObject.comment}} {{dlObject.downloadCounter}}

 Showing {{startItem + 1}} to {{(startItem + items) > filtered.length ? filtered.length : (startItem + items)}} of {{filtered.length}} results

 Showing 0 to 0 of 0 results

Items Per Page:  

Not Found

Uh Oh. Something is missing. Try double checking the URL and try again.


The time series shows the 16-day Normalized Difference Vegetation Index (NDVI) average from the MOD13Q1 data product.
Use the slider below the time series to zoom in and out.

Includes all pixels that have acceptable quality

To view / download these data and other MOD13Q1 products for this site, visit MODIS/Terra Vegetation Indices.

For other related products, visit MODIS/VIIRS Fixed Sites Subsets Tool.


ORNL DAAC. 2018. MODIS and VIIRS Land Products Fixed Sites Subsetting and Visualization Tool. ORNL DAAC, Oak Ridge, Tennessee, USA.

Read more on how to cite these MODIS products. Data come from NASA’s MODIS instruments installed on satellites Terra and Aqua, which scan the entire Earth’s surface every one to two days.

MODIS NDVI subsetted data is not yet available for this site.

For a complete list of AmeriFlux sites, visit ORNL DAAC's MODIS/VIIRS Fixed Sites Subsets Tool.

Year Publication
2020 Xu, B., Arain, M. A., Black, T. A., Law, B. E., Pastorello, G. Z., Chu, H. (2020) Seasonal Variability Of Forest Sensitivity To Heat And Drought Stresses: A Synthesis Based On Carbon Fluxes From North American Forest Ecosystems, Global Change Biology, 26(2), 901-918.
2021 Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn, M. S., Metzger, S., Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi, D., Bernacchi, C., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Bracho, R., Brown, S., Brunsell, N. A., Chen, J., Chen, X., Clark, K., Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A., Gough, C. M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., Ikawa, H., Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H., Kobayashi, H., Kolb, T., Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick, K., Oberbauer, S. F., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E., Prajapati, P., Prueger, J., Quinton, W. L., Richardson, A. D., Russell, E. S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C., Stuart-Haëntjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A., Ueyama, M., Vargas, R., Wood, J. D., Zona, D. (2021) Representativeness Of Eddy-Covariance Flux Footprints For Areas Surrounding Ameriflux Sites, Agricultural And Forest Meteorology, 301-302, 108350.
2015 Stuart-Haëntjens, E. J., Curtis, P. S., Fahey, R. T., Vogel, C. S., Gough, C. M. (2015) Net Primary Production Of A Temperate Deciduous Forest Exhibits A Threshold Response To Increasing Disturbance Severity, Ecology, 96(9), 2478-2487.
2018 Stuart-Haëntjens, E., De Boeck, H. J., Lemoine, N. P., Mänd, P., Kröel-Dulay, G., Schmidt, I. K., Jentsch, A., Stampfli, A., Anderegg, W. R., Bahn, M., Kreyling, J., Wohlgemuth, T., Lloret, F., Classen, A. T., Gough, C. M., Smith, M. D. (2018) Mean Annual Precipitation Predicts Primary Production Resistance And Resilience To Extreme Drought, Science Of The Total Environment, 636, 360-366.
2016 Schmid, A. V., Vogel, C. S., Liebman, E., Curtis, P. S., Gough, C. M. (2016) Coarse Woody Debris And The Carbon Balance Of A Moderately Disturbed Forest, Forest Ecology And Management, 361, 38-45.
2018 Sagara, B., Fahey, R., Vogel, C., Fotis, A., Curtis, P., Gough, C. (2018) Moderate Disturbance Has Similar Effects On Production Regardless Of Site Quality And Composition, Forests, 9(2), 70.
2018 LaRue, E. A., Atkins, J. W., Dahlin, K., Fahey, R., Fei, S., Gough, C., Hardiman, B. S. (2018) Linking Landsat To Terrestrial Lidar: Vegetation Metrics Of Forest Greenness Are Correlated With Canopy Structural Complexity, International Journal Of Applied Earth Observation And Geoinformation, 73, 420-427.
2016 Gough, C. M., Curtis, P. S., Hardiman, B. S., Scheuermann, C. M., Bond‐Lamberty, B. (2016) Disturbance, Complexity, And Succession Of Net Ecosystem Production In North America’S Temperate Deciduous Forests, Ecosphere, 7(6), .
2018 Hardiman, B., LaRue, E., Atkins, J., Fahey, R., Wagner, F., Gough, C. (2018) Spatial Variation In Canopy Structure Across Forest Landscapes, Forests, 9(8), 474.
2016 Fahey, R. T., Stuart-Haëntjens, E. J., Gough, C. M., De La Cruz, A., Stockton, E., Vogel, C. S., Curtis, P. S. (2016) Evaluating Forest Subcanopy Response To Moderate Severity Disturbance And Contribution To Ecosystem-Level Productivity And Resilience, Forest Ecology And Management, 376, 135-147.
2018 Curtis, P. S., Gough, C. M. (2018) Forest Aging, Disturbance And The Carbon Cycle, New Phytologist, 219(4), 1188-1193.
2018 Bond-Lamberty, B., Bailey, V. L., Chen, M., Gough, C. M., Vargas, R. (2018) Globally Rising Soil Heterotrophic Respiration Over Recent Decades, Nature, 560(7716), 80-83.
2018 Atkins, J. W., Fahey, R. T., Hardiman, B. H., Gough, C. M. (2018) Forest Canopy Structural Complexity And Light Absorption Relationships At The Subcontinental Scale, Journal Of Geophysical Research: Biogeosciences, 123(4), 1387-1405.
2014 Nave, L. E., Sparks, J. P., Le Moine, J., Hardiman, B. S., Nadelhoffer, K. J., Tallant, J. M., Vogel, C. S., Strahm, B. D., Curtis, P. S. (2014) Changes In Soil Nitrogen Cycling In A Northern Temperate Forest Ecosystem During Succession, Biogeochemistry, 121(3), 471-488.
2011 Hardiman, B. S., Bohrer, G., Gough, C. M., Vogel, C. S., Curtis, P. S. (2011) The Role Of Canopy Structural Complexity In Wood Net Primary Production Of A Maturing Northern Deciduous Forest, Ecology, 92(9), 1818-1827.
2011 Nave, L. E., Gough, C. M., Maurer, K. D., Bohrer, G., Hardiman, B. S., Le Moine, J., Munoz, A. B., Nadelhoffer, K. J., Sparks, J. P., Strahm, B. D., Vogel, C. S., Curtis, P. S. (2011) Disturbance And The Resilience Of Coupled Carbon And Nitrogen Cycling In A North Temperate Forest, Journal Of Geophysical Research, 116(G4), .
2013 Hardiman, B. S., Gough, C. M., Halperin, A., Hofmeister, K. L., Nave, L. E., Bohrer, G., Curtis, P. S. (2013) Maintaining High Rates Of Carbon Storage In Old Forests: A Mechanism Linking Canopy Structure To Forest Function, Forest Ecology And Management, 298, 111-119.
2013 Hardiman, B., Bohrer, G., Gough, C., Curtis, P. (2013) Canopy Structural Changes Following Widespread Mortality Of Canopy Dominant Trees, Forests, 4(3), 537-552.
2013 Maurer, K. D., Hardiman, B. S., Vogel, C. S., Bohrer, G. (2013) Canopy-Structure Effects On Surface Roughness Parameters: Observations In A Great Lakes Mixed-Deciduous Forest, Agricultural And Forest Meteorology, 177, 24-34.
2013 Detto, M., Bohrer, G., Nietz, J., Maurer, K., Vogel, C., Gough, C., Curtis, P. (2013) Multivariate Conditional Granger Causality Analysis For Lagged Response Of Soil Respiration In A Temperate Forest, Entropy, 15(12), 4266-4284.
2013 Thomsen, J., Bohrer, G., Matheny, A., Ivanov, V., He, L., Renninger, H., Schäfer, K. (2013) Contrasting Hydraulic Strategies During Dry Soil Conditions In Quercus Rubra And Acer Rubrum In A Sandy Site In Michigan, Forests, 4(4), 1106-1120.
2015 Frasson, R. P., Bohrer, G., Medvigy, D., Matheny, A. M., Morin, T. H., Vogel, C. S., Gough, C. M., Maurer, K. D., Curtis, P. S. (2015) Modeling Forest Carbon Cycle Response To Tree Mortality: Effects Of Plant Functional Type And Disturbance Intensity, Journal Of Geophysical Research: Biogeosciences, 120(11), 2178-2193.
2017 Matheny, A. M., Mirfenderesgi, G., Bohrer, G. (2017) Trait-Based Representation Of Hydrological Functional Properties Of Plants In Weather And Ecosystem Models, Plant Diversity, 39(1), 1-12.
2017 Matheny, A. M., Garrity, S. R., Bohrer, G. (2017) The Calibration And Use Of Capacitance Sensors To Monitor Stem Water Content In Trees, Journal Of Visualized Experiments, (130), .
2018 Fotis, A. T., Morin, T. H., Fahey, R. T., Hardiman, B. S., Bohrer, G., Curtis, P. S. (2018) Forest Structure In Space And Time: Biotic And Abiotic Determinants Of Canopy Complexity And Their Effects On Net Primary Productivity, Agricultural And Forest Meteorology, 250-251, 181-191.
2018 Atkins, J. W., Bohrer, G., Fahey, R. T., Hardiman, B. S., Morin, T. H., Stovall, A. E., Zimmerman, N., Gough, C. M. (2018) Quantifying Vegetation And Canopy Structural Complexity From Terrestrial Lidar Data Using The Forestr R Package, Methods In Ecology And Evolution, 9(10), 2057-2066.
2015 Toomey, M., Friedl, M. A., Frolking, S., Hufkens, K., Klosterman, S., Sonnentag, O., Baldocchi, D. D., Bernacchi, C. J., Biraud, S. C., Bohrer, G., Brzostek, E., Burns, S. P., Coursolle, C., Hollinger, D. Y., Margolis, H. A., McCaughey, H., Monson, R. K., Munger, J. W., Pallardy, S., Phillips, R. P., Torn, M. S., Wharton, S., Zeri, M., Richardson, A. D. (2015) Greenness Indices From Digital Cameras Predict The Timing And Seasonal Dynamics Of Canopy-Scale Photosynthesis, Ecological Applications, 25(1), 99-115.
2019 Sullivan, R. C., Kotamarthi, V. R., Feng, Y. (2019) Recovering Evapotranspiration Trends From Biased CMIP5 Simulations And Sensitivity To Changing Climate Over North America, Journal Of Hydrometeorology, 20(8), 1619-1633.
2019 Sullivan, R. C., Cook, D. R., Ghate, V. P., Kotamarthi, V. R., Feng, Y. (2019) Improved Spatiotemporal Representativeness And Bias Reduction Of Satellite-Based Evapotranspiration Retrievals Via Use Of In Situ Meteorology And Constrained Canopy Surface Resistance, Journal Of Geophysical Research: Biogeosciences, 124(2), 342-352.
2018 Chu, H., Baldocchi, D. D., Poindexter, C., Abraha, M., Desai, A. R., Bohrer, G., Arain, M. A., Griffis, T., Blanken, P. D., O'Halloran, T. L., Thomas, R. Q., Zhang, Q., Burns, S. P., Frank, J. M., Christian, D., Brown, S., Black, T. A., Gough, C. M., Law, B. E., Lee, X., Chen, J., Reed, D. E., Massman, W. J., Clark, K., Hatfield, J., Prueger, J., Bracho, R., Baker, J. M., Martin, T. A. (2018) Temporal Dynamics Of Aerodynamic Canopy Height Derived From Eddy Covariance Momentum Flux Data Across North American Flux Networks, Geophysical Research Letters, 45, 9275–9287.
2013 Gough, C. M., Hardiman, B. S., Nave, L. E., Bohrer, G., Maurer, K. D., Vogel, C. S., Nadelhoffer, K. J., Curtis, P. S. (2013) Sustained Carbon Uptake And Storage Following Moderate Disturbance In A Great Lakes Forest, Ecological Applications, 23(5), 1202-1215.
2011 Nave, L.E., Gough, C.M., Maurer, K.D., Bohrer, G, Hardiman, B.S., Le Moine, J., Munoz, A.B., Nadelhoffer, K.J., Sparks, J.P., Strahm, B.D., Vogel, C.S., Curtis, P.S. (2011) Disturbance And The Resilience Of Coupled Carbon And Nitrogen Cycling In A North Temperate Forest, Journal Of Geophysical Research, 116(G04016), n/a-n/a.

BADM for This Site

Access the Biological, Ancillary, Disturbance and Metadata (BADM) information and data for this site.

BADM contain information for many uses, such as characterizing a site’s vegetation and soil, describing disturbance history, and defining instrumentation for flux processing. They complement the flux/met data.

* Online updates are shown on the Overview tab real time. However, downloaded BADM files will not reflect those updates until they have been reviewed for QA/QC.

Wind Roses

Click an image below to enlarge it, or use the navigation panel.
  • Image scale: 711m x 711m
  • Data Collected:
  • Wind roses use variables ‘WS’ and ‘WD’.
    Download Data Download Wind Rose as Image File (PNG)

    Wind Speed (m/s)

  • Graph Type
  • Wind Speed Scale
  • Wind Direction Scale (%)
  • Show Satellite Image
  • Show Wind Rose
  • Annual Average
    About Ameriflux Wind Roses
    Wind Rose Explanation
    wind rose gives a succinct view of how wind speed and direction are typically distributed at a particular location. Presented in a circular format, a wind rose shows the frequency and intensity of winds blowing from particular directions. The length of each “spoke” around the circle indicates the amount of time (frequency) that the wind blows from a particular direction. Colors along the spokes indicate categories of wind speed (intensity). Each concentric circle represents a different frequency, emanating from zero at the center to increasing frequencies at the outer circles
    This information can be useful to gain insight into regions surrounding a flux tower that contribute to the measured fluxes, and how those regions change in dependence of the time of day and season. The wind roses presented here are for four periods of the year, and in 16 cardinal directions. Graphics are available for all sites in the AmeriFlux network based on reported wind measurements at each site.
    Data from each site can be downloaded by clicking the ‘download’ button.
    Hover the cursor over a wind rose to obtain directions, speeds and intensities.
    Note that wind roses are not equivalent to flux footprints. Specifically, the term flux footprint describes an upwind area “seen” by the instruments measuring vertical turbulent fluxes, such that heat, water, gas and momentum transport generated in this area is registered by the instruments. Wind roses, on the other hand, identify only the direction and speed of wind.
    Where do these data come from?
    The wind roses are based on observed hourly data from the sites registered with the AmeriFlux Network.
    Parameters for AmeriFlux Wind Roses
    To use wind roses for a single AmeriFlux site, the following parameters may be most useful:
    • Wind Speed Scale: Per Site
    • Wind Direction Scale (%): Per Site
    To compare wind roses from more than one single AmeriFlux site, the following parameters may be most useful:
    • Wind Speed Scale: Non-Linear
    • Wind Direction Scale (%): AmeriFlux
    Mar - Jun; 6am - 6pm
    Mar - Jun; 6pm - 6am
    Jun - Sep; 6am - 6pm
    Jun - Sep; 6pm - 6am
    Sep - Dec; 6am - 6pm
    Sep - Dec; 6pm - 6am
    Dec - Mar; 6am - 6pm
    Dec - Mar; 6pm - 6am