US-Wrc: Wind River Crane Site
- Overview
- Windroses
- Data Citation
- Data Use Log
- Image Gallery
- Remote Sensing Data
- MODIS
- PhenoCam
- GeoNEX
- Publications
- BADM
Tower_team: | |
PI: | Sonia Wharton wharton4@llnl.gov - Lawrence Livermore National Laboratory |
Lat, Long: | 45.8205, -121.9519 |
Elevation(m): | 371 |
Network Affiliations: | AmeriFlux, Phenocam |
Vegetation IGBP: | ENF (Evergreen Needleleaf Forests: Lands dominated by woody vegetation with a percent cover >60% and height exceeding 2 meters. Almost all trees remain green all year. Canopy is never without green foliage.) |
Climate Koeppen: | Csb (Mediterranean: mild with dry, warm summer) |
Mean Annual Temp (°C): | 8.8 |
Mean Annual Precip. (mm): | 2452 |
Flux Species Measured: | CO2 |
Years Data Collected: | 1998 - 2016 |
Years Data Available: | AmeriFlux BASE 1998 - 2015 Data Citation |
Data Use Policy: | AmeriFlux CC-BY-4.0 Policy1 |
Description: | Wind River Field Station flux tower site is located in the T.T. Munger Research Area of the Wind River Ranger District in the Gifford Pinchot National ... Wind River Field Station flux tower site is located in the T.T. Munger Research Area of the Wind River Ranger District in the Gifford Pinchot National Forest. Protected since 1926, the T.T. Munger Research Natural Area (RNA) is administered by the USDA Forest Service Pacific Northwest Research Station and Gifford Pinchot National Forest. The Douglas-fir/western hemlock dominant stand is approximately 500 years old and represents end points of several ecological gradients including age, biomass, structural complexity, and density of the dominant overstory species. A complete stand replacement fire, approximately 450-500 years ago, resulted in the initial establishment. No significant disturbances have occurred since the fire aside from those confined to small groups of single trees, such as overturn from high wind activity and mechanical damage from winter precipitation. See MoreShow Less |
URL: | http://depts.washington.edu/wrccrf/ |
Research Topics: | Research and monitoring objectives are to 1) Describe the estimation of CO2 exchange from the oldest forest ecosystem (500 years old) in the AmeriFlux ... Research and monitoring objectives are to 1) Describe the estimation of CO2 exchange from the oldest forest ecosystem (500 years old) in the AmeriFlux network, based on eddy covariance, using accepted AmeriFlux correction techniques for low friction velocities and turbulence levels, and related advection calculation methods; 2) Examine the CO2 exchange response to diurnal, seasonal, annual, and interannual variations, and relate the exchange to meteorologic variables such as photosynthetically active radiation (PAR) and soil and air temperatures; 3) Relate measurements to ecosystem physiological processes and identify when the forest is a source or sink in relation to these processes; 4) support collaborative efforts with other ecological studies. See MoreShow Less |
Acknowledgment: | — |
- This site’s data can also be used under the more restrictive AmeriFlux Legacy Policy.
The AmeriFlux Legacy Policy must be followed if this site’s data are combined with data from sites that require the AmeriFlux Legacy Policy.




Copyright preference: Request for permission
US-Wrc: Wind River Crane Site
- Overview
- Windroses
- Data Citation
- Data Use Log
- Image Gallery
- Remote Sensing Data
- MODIS
- PhenoCam
- GeoNEX
- Publications
- BADM
Use the information below for citation of this site. See the Data Policy page for more details.
DOI(s) for citing US-Wrc data
Data Use Policy: AmeriFlux CC-BY-4.0 License
This site’s data can also be used under the more restrictive AmeriFlux Legacy Policy.
The AmeriFlux Legacy Policy must be followed if US-Wrc data are combined with data from sites that require the AmeriFlux Legacy Policy.
- AmeriFlux BASE: https://doi.org/10.17190/AMF/1246114
Citation: Sonia Wharton (2016), AmeriFlux BASE US-Wrc Wind River Crane Site, Ver. 8-1, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246114
To cite BADM when downloaded on their own, use the publications below for citing site characterization. When using BADM that are downloaded with AmeriFlux BASE and AmeriFlux FLUXNET products, use the DOI citation for the associated data product.
Publication(s) for citing site characterization
- —
Acknowledgments
- —
Resources
- AmeriFlux Logos & Acknowledgments
US-Wrc: Wind River Crane Site
- Overview
- Windroses
- Data Citation
- Data Use Log
- Image Gallery
- Remote Sensing Data
- MODIS
- PhenoCam
- GeoNEX
- Publications
- BADM

This page displays the list of downloads of data for the site US-Wrc.
Note: Results are the number of downloads to distinct data users. The Download Count column indicates the number of times the data user downloaded the data. The Version column refers to the version of the data product for the site that was downloaded by the data user.
Date | Name | Data Product | Version | Intended Use | Intended Use Description | Download Count |
---|
Date | Name | Data Product | Vers. | Intended Use | Intended Use Description | Download Count |
---|---|---|---|---|---|---|
Showing 0 to 0 of 0 results
Not Found
Uh Oh. Something is missing. Try double checking the URL and try again.
US-Wrc: Wind River Crane Site
- Overview
- Windroses
- Data Citation
- Data Use Log
- Image Gallery
- Remote Sensing Data
- MODIS
- PhenoCam
- GeoNEX
- Publications
- BADM
AmeriFlux Images | Add Image |

2014.US.Wrc.Sitevisit.DSC_0385
2014.US.Wrc.Sitevisit.DSC_0385
Keywords: —
Location:
View in Original Size
To download, right-click photo (Mac: control-click) and choose Save Image As

2014.US.Wrc.Sitevisit.IMG_5481
2014.US.Wrc.Sitevisit.IMG_5481
Keywords: —
Location:
View in Original Size
To download, right-click photo (Mac: control-click) and choose Save Image As

2014.US.Wrc.Sitevisit.IMG_5489
2014.US.Wrc.Sitevisit.IMG_5489
Keywords: —
Location:
View in Original Size
To download, right-click photo (Mac: control-click) and choose Save Image As

Wind River old-growth canopy
Trees within the old-growth stand range in age from 0 to ~500 years old and reach maximum heights of 60 m. The dominant trees are Western Hemlock and Douglas-fir. Note the vertical complexity within the canopy.
Keywords: Wind River, old-growth canopy
Location: Washington, United States
View in Original Size
To download, right-click photo (Mac: control-click) and choose Save Image As

Wind River AmeriFlux Tower – overstory measurements
At approximately 67 m above ground level a 3-D sonic anemometer and closed-path IRGA are mounted on the Wind River AmeriFlux tower. These instruments collect the EC data at the site.
Keywords: Wind River, eddy covariance
Location: Washington, United States
View in Original Size
To download, right-click photo (Mac: control-click) and choose Save Image As

Wind River AmeriFlux
Keywords: —
Location: Washington, United States
View in Original Size
To download, right-click photo (Mac: control-click) and choose Save Image As
US-Wrc: Wind River Crane Site
- Overview
- Windroses
- Data Citation
- Data Use Log
- Image Gallery
- Remote Sensing Data
- MODIS
- PhenoCam
- GeoNEX
- Publications
- BADM
MODIS NDVI
The time series shows the 16-day Normalized Difference Vegetation Index (NDVI) average from the MOD13Q1 data product.
Use the slider below the time series to zoom in and out.
To view / download these data and other MOD13Q1 products for this site, visit MODIS/Terra Vegetation Indices.
For other related products, visit MODIS/VIIRS Fixed Sites Subsets Tool.
Citation:
ORNL DAAC. 2018. Terrestrial Ecology Subsetting & Visualization Services (TESViS) Fixed Sites Subsets. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1567
MODIS NDVI subsetted data is not yet available for this site.
For a complete list of AmeriFlux sites, visit ORNL DAAC's MODIS/VIIRS Fixed Sites Subsets Tool.
PhenoCam Images and Derived Time Series Data
PhenoCams are high-resolution digital cameras that take repeated images of studied ecosystems and provide quantitative information about the canopy phenology. The PhenoCam Network coordinates the camera installation and data reporting/analyses across sites in the Americas, providing automated, near-surface remote sensing of canopy phenology across a range of ecosystems and climate zones. Use of PhenoCam images / data should follow the PhenoCam Data Use Policy .
PhenoCam sites for US-Wrc:
Use the links below to explore camera images and interactive timeseries for these sites.
Citation:
B. Seyednasrollah, A. M. Young, K. Hufkens, T. Milliman, M. A. Friedl, S. Frolking, and A. D. Richardson. Tracking vegetation phenology across diverse biomes using version 2.0 of the phenocam dataset. Scientific Data, 6(1):222, 2019. doi:10.1038/s41597-019-0229-9Camera Imagery
Milliman, T., B. Seyednasrollah, A.M. Young, K. Hufkens, M.A. Friedl, S. Frolking, A.D. Richardson, M. Abraha, D.W. Allen, M. Apple, M.A. Arain, J.M. Baker, D. Baldocchi, C.J. Bernacchi, J. Bhattacharjee, P. Blanken, D.D. Bosch, R. Boughton, E.H. Boughton, R.F. Brown, D.M. Browning, N. Brunsell, S.P. Burns, M. Cavagna, H. Chu, P.E. Clark, B.J. Conrad, E. Cremonese, D. Debinski, A.R. Desai, R. Diaz-Delgado, L. Duchesne, A.L. Dunn, D.M. Eissenstat, T. El-Madany, D.S.S. Ellum, S.M. Ernest, A. Esposito, L. Fenstermaker, L.B. Flanagan, B. Forsythe, J. Gallagher, D. Gianelle, T. Griffis, P. Groffman, L. Gu, J. Guillemot, M. Halpin, P.J. Hanson, D. Hemming, A.A. Hove, E.R. Humphreys, A. Jaimes-Hernandez, A.A. Jaradat, J. Johnson, E. Keel, V.R. Kelly, J.W. Kirchner, P.B. Kirchner, M. Knapp, M. Krassovski, O. Langvall, G. Lanthier, G.l. Maire, E. Magliulo, T.A. Martin, B. McNeil, G.A. Meyer, M. Migliavacca, B.P. Mohanty, C.E. Moore, R. Mudd, J.W. Munger, Z.E. Murrell, Z. Nesic, H.S. Neufeld, W. Oechel, A.C. Oishi, W.W. Oswald, T.D. Perkins, M.L. Reba, B. Rundquist, B.R. Runkle, E.S. Russell, E.J. Sadler, A. Saha, N.Z. Saliendra, L. Schmalbeck, M.D. Schwartz, R.L. Scott, E.M. Smith, O. Sonnentag, P. Stoy, S. Strachan, K. Suvocarev, J.E. Thom, R.Q. Thomas, A.K. Van den berg, R. Vargas, J. Verfaillie, C.S. Vogel, J.J. Walker, N. Webb, P. Wetzel, S. Weyers, A.V. Whipple, T.G. Whitham, G. Wohlfahrt, J.D. Wood, J. Yang, X. Yang, G. Yenni, Y. Zhang, Q. Zhang, and D. Zona. 2019. PhenoCam Dataset v2.0: Digital Camera Imagery from the PhenoCam Network, 2000-2018. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1689
Green Chromatic Coordinate Time Series
Seyednasrollah, B., A.M. Young, K. Hufkens, T. Milliman, M.A. Friedl, S. Frolking, A.D. Richardson, M. Abraha, D.W. Allen, M. Apple, M.A. Arain, J. Baker, J.M. Baker, D. Baldocchi, C.J. Bernacchi, J. Bhattacharjee, P. Blanken, D.D. Bosch, R. Boughton, E.H. Boughton, R.F. Brown, D.M. Browning, N. Brunsell, S.P. Burns, M. Cavagna, H. Chu, P.E. Clark, B.J. Conrad, E. Cremonese, D. Debinski, A.R. Desai, R. Diaz-Delgado, L. Duchesne, A.L. Dunn, D.M. Eissenstat, T. El-Madany, D.S.S. Ellum, S.M. Ernest, A. Esposito, L. Fenstermaker, L.B. Flanagan, B. Forsythe, J. Gallagher, D. Gianelle, T. Griffis, P. Groffman, L. Gu, J. Guillemot, M. Halpin, P.J. Hanson, D. Hemming, A.A. Hove, E.R. Humphreys, A. Jaimes-Hernandez, A.A. Jaradat, J. Johnson, E. Keel, V.R. Kelly, J.W. Kirchner, P.B. Kirchner, M. Knapp, M. Krassovski, O. Langvall, G. Lanthier, G.l. Maire, E. Magliulo, T.A. Martin, B. McNeil, G.A. Meyer, M. Migliavacca, B.P. Mohanty, C.E. Moore, R. Mudd, J.W. Munger, Z.E. Murrell, Z. Nesic, H.S. Neufeld, T.L. O'Halloran, W. Oechel, A.C. Oishi, W.W. Oswald, T.D. Perkins, M.L. Reba, B. Rundquist, B.R. Runkle, E.S. Russell, E.J. Sadler, A. Saha, N.Z. Saliendra, L. Schmalbeck, M.D. Schwartz, R.L. Scott, E.M. Smith, O. Sonnentag, P. Stoy, S. Strachan, K. Suvocarev, J.E. Thom, R.Q. Thomas, A.K. Van den berg, R. Vargas, J. Verfaillie, C.S. Vogel, J.J. Walker, N. Webb, P. Wetzel, S. Weyers, A.V. Whipple, T.G. Whitham, G. Wohlfahrt, J.D. Wood, S. Wolf, J. Yang, X. Yang, G. Yenni, Y. Zhang, Q. Zhang, and D. Zona. 2019. PhenoCam Dataset v2.0: Vegetation Phenology from Digital Camera Imagery, 2000-2018. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1674
GeoNEX Data Products
GeoNEX led by NASA Earth eXchange (NEX) is a collaborative effort for generating Earth monitoring products from the new generation of geostationary satellite sensors. GeoNEX has produced a suite of geostationary data products including surface reflectance, land surface temperature, surface solar radiation, and many others.
The GeoNEX Common Grid locates GeoNEX data in the geographic (latitude/longitude) projection. Pixels (grid cells) are created at regular 0.005°, 0.01°, and 0.02° resolutions.
GeoNEX pixels below cover the area 0.06° x 0.06° around and including site US-Wrc, 45.8205, -121.9519.
Click a square in the grid at left to display its data below.
Coordinates for selected GeoNEX Pixel
Graph controls:
- Zoom: click-drag
- Pan: shift-click-drag
- Restore zoom level: double-click
- Use the slider below the time series to zoom in and out.
All download requests will be logged.
NDVI: Normalized Difference Vegetation Index
Resolution: 0.01° x 0.01° & 10 minutes
Coordinates for pixel:
NIRv Near-Infrared Reflectance of vegetation
Resolution: 0.01° x 0.01° & 10 minutes
Coordinates for pixel:
DSR: Surface downward shortwave radiation
Resolution: 0.01° x 0.01° & Hourly
Coordinates for pixel:
LST: Land Surface Temperature
Resolution: 0.02° x 0.02° & Hourly
Coordinates for pixel:
Citation
This material can be used without obtaining permission from NASA. NASA should be acknowledged as the source of this material.
Subset Data Citation:
- Hashimoto, H., Wang, W., Park, T., Khajehei, S., Ichii, K., Michaelis, A.R., Guzman, A., Nemani, R.R., Torn, M., Yi, K., Brosnan, I.G. (in preparation). Subsets of geostationary satellite data over international observing network sites for studying the diurnal dynamics of energy, carbon, and water cycles.
Relevant Science Publication Citation:
GeoNEX Surface Reflectance for Vegetation Indices (NDVI & NIRv)- Wang, W., Wang, Y., Lyapustin, A., Hashimoto, H., Park, T., Michaelis, A., & Nemani, R. (2022). A novel atmospheric correction algorithm to exploit the diurnal variability in hypertemporal geostationary observations. Remote Sensing, 14(4), 964.
- Li, R., Wang, D., Wang, W., & Nemani, R. (2023). A GeoNEX-based high-spatiotemporal-resolution product of land surface downward shortwave radiation and photosynthetically active radiation. Earth System Science Data, 15(3), 1419-1436.
- Jia, A., Liang, S., & Wang, D. (2022). Generating a 2-km, all-sky, hourly land surface temperature product from Advanced Baseline Imager data. Remote Sensing of Environment, 278, 113105.
US-Wrc: Wind River Crane Site
- Overview
- Windroses
- Data Citation
- Data Use Log
- Image Gallery
- Remote Sensing Data
- MODIS
- PhenoCam
- GeoNEX
- Publications
- BADM
AmeriFlux Publications | Add Publication |
Year | Publication |
---|---|
2021 | Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn, M. S., Metzger, S., Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi, D., Bernacchi, C., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Bracho, R., Brown, S., Brunsell, N. A., Chen, J., Chen, X., Clark, K., Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A., Gough, C. M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., Ikawa, H., Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H., Kobayashi, H., Kolb, T., Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick, K., Oberbauer, S. F., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E., Prajapati, P., Prueger, J., Quinton, W. L., Richardson, A. D., Russell, E. S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C., Stuart-Haëntjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A., Ueyama, M., Vargas, R., Wood, J. D., Zona, D. (2021) Representativeness Of Eddy-Covariance Flux Footprints For Areas Surrounding Ameriflux Sites, Agricultural And Forest Meteorology, 301-302, 108350. https://doi.org/10.1016/j.agrformet.2021.108350 |
2021 | Still, C. J., Rastogi, B., Page, G. F., Griffith, D. M., Sibley, A., Schulze, M., Hawkins, L., Pau, S., Detto, M., Helliker, B. R. (2021) Imaging Canopy Temperature: Shedding (Thermal) Light On Ecosystem Processes, New Phytologist, 230(5), 1746-1753. https://doi.org/https://doi.org/10.1111/nph.17321 |
2019 | Still, C., Powell, R., Aubrecht, D., Kim, Y., Helliker, B., Roberts, D., Richardson, A. D., Goulden, M. (2019) Thermal Imaging In Plant And Ecosystem Ecology: Applications And Challenges, Ecosphere, 10(6), . https://doi.org/https://doi.org/10.1002/ecs2.2768 |
2018 | Chu, H., Baldocchi, D. D., Poindexter, C., Abraha, M., Desai, A. R., Bohrer, G., Arain, M. A., Griffis, T., Blanken, P. D., O'Halloran, T. L., Thomas, R. Q., Zhang, Q., Burns, S. P., Frank, J. M., Christian, D., Brown, S., Black, T. A., Gough, C. M., Law, B. E., Lee, X., Chen, J., Reed, D. E., Massman, W. J., Clark, K., Hatfield, J., Prueger, J., Bracho, R., Baker, J. M., Martin, T. A. (2018) Temporal Dynamics Of Aerodynamic Canopy Height Derived From Eddy Covariance Momentum Flux Data Across North American Flux Networks, Geophysical Research Letters, 45, 9275–9287. https://doi.org/10.1029/2018GL079306 |
2018 | Rastogi, B., Berkelhammer, M., Wharton, S., Whelan, M. E., Itter, M. S., Leen, J. B., Gupta, M. X., Noone, D., Still, C. J. (2018) Large Uptake Of Atmospheric Ocs Observed At A Moist Old Growth Forest: Controls And Implications For Carbon Cycle Applications, Journal Of Geophysical Research: Biogeosciences, 123(11), 3424-3438. https://doi.org/10.1029/2018JG004430 |
2018 | Rastogi, B., Berkelhammer, M., Wharton, S., Whelan, M. E., Meinzer, F. C., Noone, D., Still, C. J. (2018) Ecosystem Fluxes Of Carbonyl Sulfide In An Old-Growth Forest: Temporal Dynamics And Responses To Diffuse Radiation And Heat Waves, Biogeosciences, 15(23), 7127-7139. https://doi.org/10.5194/bg-15-7127-2018 |
2017 | Wharton, S., Ma, S., Baldocchi, D.D., Falk, M., Newman, J.F., Osuna, J.L, Bible, K. (2017) Influence of regional nighttime atmospheric regimes on canopy turbulence and gradients at a closed and open forest in mountain-valley terrain, Agricultural and Forest Meteorology, 237–238, 18-29. https://doi.org/10.1016/j.agrformet.2017.01.020 |
2017 | Raczka, B., Biraud, S. C., Ehleringer, J. R., Lai, C., Miller, J. B., Pataki, D. E., Saleska, S. R., Torn, M. S., Vaughn, B. H., Wehr, R., Bowling, D. R. (2017) Does Vapor Pressure Deficit Drive The Seasonality Of δ13C Of The Net Land-Atmosphere Co2 Exchange Across The United States?, Journal Of Geophysical Research: Biogeosciences, 122(8), 1969-1987. https://doi.org/https://doi.org/10.1002/2017JG003795 |
2016 | Matthias Falk (2016) Climate Indices Strongly Influence Old-Growth Forest Carbon Exchange, Environmental Research Letters, 11, 1-12. |
2015 | Taylor, A.J., Lai, C.-T., Hopkins, F.M., Wharton, S., Bible, K., Xu, X., Phillips, C., Bush, S., Ehleringer, J.R. (2015) Radiocarbon-based partitioning of soil respiration in an old-growth coniferous forest, Ecosystems, 18, 459-470. |
2015 | Dennis Baldocchi, Cove Sturtevant (2015) Does day and night sampling reduce spurious correlation between canopy photosynthesis and ecosystem respiration?, Agricultural and Forest Meteorology, 207, 117-126. https://doi.org/10.1016/j.agrformet.2015.03.010 |
2015 | Toomey, M., Friedl, M. A., Frolking, S., Hufkens, K., Klosterman, S., Sonnentag, O., Baldocchi, D. D., Bernacchi, C. J., Biraud, S. C., Bohrer, G., Brzostek, E., Burns, S. P., Coursolle, C., Hollinger, D. Y., Margolis, H. A., McCaughey, H., Monson, R. K., Munger, J. W., Pallardy, S., Phillips, R. P., Torn, M. S., Wharton, S., Zeri, M., Richardson, A. D. (2015) Greenness Indices From Digital Cameras Predict The Timing And Seasonal Dynamics Of Canopy-Scale Photosynthesis, Ecological Applications, 25(1), 99-115. https://doi.org/http://doi.org/10.1890/14-0005.1 |
2012 | Wharton, S., Falk, M., Bible, K., Schroeder, M., Paw U, K.T. (2012) Old-Growth CO2 Flux Measurements Reveal High Sensitivity To Climate Anomalies Across Seasonal, Annual And Decadal Time Scales, Agricultural and Forest Meteorology, 161, 1-14. https://doi.org/10.1016/j.agrformet.2012.03.007 |
2009 | Wharton, S., Schroeder, M., Paw U, K.T., Falk, M., Bible, K. (2009) Turbulence considerations for comparing ecosystem exchange over old-growth and clear-cut stands for limited fetch and complex canopy flow conditions, Agricultural and Forest Meteorology, 149, 1477-1490. |
2009 | Wharton, S., Chasmer, L., Falk, M., Paw U, K.T. (2009) Strong links between teleconnections and ecosystem exchange found at a Pacific Northwest old-growth forest from flux tower and MODIS EVI data, Global Change Biology, 15, 2187-2205. https://doi.org/10.1111/j.1365-2486.2009.01952.x |
2009 | Wharton, S., Schroeder, M., Bible, K., Falk, M., Paw U, K.T. (2009) Stand-level gas-exchange responses to seasonal drought in very young versus old Douglas-fir forests of the Pacific Northwest, Tree Physiology, 29, 959-974. https://doi.org/10.1093/treephys/tpp039 |
2008 | Falk, M., Wharton, S., Schroeder, M., Ustin, S., U, K. T. (2008) Flux Partitioning In An Old-Growth Forest: Seasonal And Interannual Dynamics, Tree Physiology, 28(4), 509-520. https://doi.org/10.1093/treephys/28.4.509 |
2005 | Falk, M., Paw U, K.T., Wharton, S., Schroeder, M. (2005) Is soil respiration a major contributor to the carbon budget within a Pacific Northwest old-growth forest?, Agricultural and Forest Meteorology, 135, 269-283. |
2004 | Shaw, D., Franklin, J., Bible, K., Klopatek, J., Freeman, E., Greene, S., Parker, G. (2004) Ecological Setting Of The Wind River Old-Growth Forest, Ecosystems, 7(5), 427-439. https://doi.org/10.1007/s10021-004-0135-6 |
2004 | Paw U, K., Falk, M., Suchanek, T., Ustin, S., Chen, J., Park, Y., Winner, W., Thomas, S., Hsiao, T., Shaw, R., King, T., Pyles, R., Schroeder, M., Matista, A. (2004) Carbon Dioxide Exchange Between An Old-Growth Forest And The Atmosphere, Ecosystems, 7(5), 513-524. https://doi.org/10.1007/s10021-004-0141-8 |
2004 | Harmon, M.E., Bible, K., Ryan, M.G., Shaw, D.C., Chen, H., Klopatek, J., Li, X. (2004) Production, Respiration, And Overall Carbon Balance In An Old-Growth Pseudotsuga-Tsuga Forest Ecosystem, Ecosystems, 7, 498-512. https://doi.org/10.1007/s10021-004-0140-9 |
US-Wrc: Wind River Crane Site
- Overview
- Windroses
- Data Citation
- Data Use Log
- Image Gallery
- Remote Sensing Data
- MODIS
- PhenoCam
- GeoNEX
- Publications
- BADM
BADM for This Site
Access the Biological, Ancillary, Disturbance and Metadata (BADM) information and data for this site.
BADM contain information for many uses, such as characterizing a site’s vegetation and soil, describing disturbance history, and defining instrumentation for flux processing. They complement the flux/met data.
- Download BADM for this site*
- View Site General Info for this site (Overview tab)*
- Use Online Editor to update Site General Info or DOI Authorship
- Update information about submitted data (Variable Information tool)
- More BADM resources
* Online updates are shown on the Overview tab real time. However, downloaded BADM files will not reflect those updates until they have been reviewed for QA/QC.
US-Wrc: Wind River Crane Site
- Overview
- Windroses
- Data Citation
- Data Use Log
- Image Gallery
- Remote Sensing Data
- MODIS
- PhenoCam
- GeoNEX
- Publications
- BADM
Wind Roses
Wind Speed (m/s)
Navigation
- Wind Speed Scale: Per Site
- Wind Direction Scale (%): Per Site
- Wind Speed Scale: Non-Linear
- Wind Direction Scale (%): AmeriFlux