AmeriFlux Logo
Quick Sites: Sign in to Use

US-Prr: Poker Flat Research Range Black Spruce Forest

Tower_team:
PI: Hideki Kobayashi hkoba@jamstec.go.jp - RIGC, Japan Agency for Marine-Earth Science and Technology
PI: Go Iwahana giwahana@alaska.edu - International Arctic Research Center, University of Alaska, Fairbanks
PI: Hiroki Ikawa hikawa.biomet@gmail.com - Hokkaido Agricultural Research Center, NARO
Technician: Naoki Kukuu naokikukuu@hotmail.com - Wood River Field Services (Contractor)
Lat, Long: 65.1237, -147.4876
Elevation(m): 210
Network Affiliations: AmeriFlux
Vegetation IGBP: ENF (Evergreen Needleleaf Forests: Lands dominated by woody vegetation with a percent cover >60% and height exceeding 2 meters. Almost all trees remain green all year. Canopy is never without green foliage.)
Climate Koeppen: Dwc (Subarctic: severe, dry winter, cool summer )
Mean Annual Temp (°C): -2
Mean Annual Precip. (mm): 275
Flux Species Measured: H2O, H, CO2
Years Data Collected: 2011 - Present
Years Data Available:

AmeriFlux BASE 2010 - 2022   Data Citation

Data Use Policy:AmeriFlux CC-BY-4.0 Policy1
Description:
This site is located in a blackspruce forest within the property of the Poker Flat Research Range, University of Alaska, Fairbanks. Time-lapse image of ...
See MoreShow Less
URL: http://monitors.iarc.uaf.edu/poker-flat-research-range/data.php
Research Topics: soil CO2 flux measurements, phenological camera
Acknowledgment: The US-Prr site is supported by JAMSTEC and IARC/UAF collaboration study (JICS) and Arctic Challenge for Sustainability Project (ArCS, Sept 2015 - Mar 2020) and ArCSII (Jul 2020-).
Site Tasks
  1. This site’s data can also be used under the more restrictive AmeriFlux Legacy Policy.
    The AmeriFlux Legacy Policy must be followed if this site’s data are combined with data from sites that require the AmeriFlux Legacy Policy.
Site Photo More Site Images
Image Credit: Lisa Johnson
Copyright preference: Request for permission
Site Publication More Site Publications
Nakai, T., Kim, Y., Busey, R. C., Suzuki, R., Nagai, S., Kobayashi, H., Park, H., Sugiura, K., Ito, A. 2013. Characteristics Of Evapotranspiration From A Permafrost Black Spruce Forest In Interior Alaska, Polar Science, 7:2, 136-148.

US-Prr: Poker Flat Research Range Black Spruce Forest

Use the information below for citation of this site. See the Data Policy page for more details.

DOI(s) for citing US-Prr data

Data Use Policy: AmeriFlux CC-BY-4.0 License

This site’s data can also be used under the more restrictive AmeriFlux Legacy Policy.
The AmeriFlux Legacy Policy must be followed if US-Prr data are combined with data from sites that require the AmeriFlux Legacy Policy.

  • AmeriFlux BASE: https://doi.org/10.17190/AMF/1246153
    Citation: Go Iwahana, Hideki Kobayashi, Hiroki Ikawa, Rikie Suzuki (2023), AmeriFlux BASE US-Prr Poker Flat Research Range Black Spruce Forest, Ver. 4-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246153

To cite BADM when downloaded on their own, use the publications below for citing site characterization. When using BADM that are downloaded with AmeriFlux BASE and AmeriFlux FLUXNET products, use the DOI citation for the associated data product.

Publication(s) for citing site characterization

Acknowledgments

Resources

US-Prr: Poker Flat Research Range Black Spruce Forest

This page displays the list of downloads of data for the site {{siteId}}.

Note: Results are the number of downloads to distinct data users. The Download Count column indicates the number of times the data user downloaded the data. The Version column refers to the version of the data product for the site that was downloaded by the data user.

Year Range

 Showing {{startItem + 1}} to {{(startItem + items) > filtered.length ? filtered.length : (startItem + items)}} of {{filtered.length}} results  Showing 0 to 0 of 0 results
Products :
';
Items Per Page:  
Date Name Data Product Version Intended Use Intended Use Description Download Count
{{dlObject.timeStamp}} {{dlObject.displayName}} {{displayProduct(dlObject.dataProduct)}} {{dlObject.version}} {{dlObject.intendedUse}} {{dlObject.comment}} {{dlObject.downloadCounter}}
No results to display
Date Name Data Product Vers. Intended Use Intended Use Description Download Count
{{dlObject.timeStamp}} {{dlObject.displayName}} {{displayProduct(dlObject.dataProduct)}} {{dlObject.version}} {{dlObject.intendedUse}} {{dlObject.comment}} {{dlObject.downloadCounter}}

 Showing {{startItem + 1}} to {{(startItem + items) > filtered.length ? filtered.length : (startItem + items)}} of {{filtered.length}} results

 Showing 0 to 0 of 0 results

Items Per Page:  

Not Found

Uh Oh. Something is missing. Try double checking the URL and try again.

US-Prr: Poker Flat Research Range Black Spruce Forest

Year Publication
2020 Xu, B., Arain, M. A., Black, T. A., Law, B. E., Pastorello, G. Z., Chu, H. (2020) Seasonal Variability Of Forest Sensitivity To Heat And Drought Stresses: A Synthesis Based On Carbon Fluxes From North American Forest Ecosystems, Global Change Biology, 26(2), 901-918. https://doi.org/10.1111/gcb.14843
2021 Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn, M. S., Metzger, S., Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi, D., Bernacchi, C., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Bracho, R., Brown, S., Brunsell, N. A., Chen, J., Chen, X., Clark, K., Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A., Gough, C. M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., Ikawa, H., Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H., Kobayashi, H., Kolb, T., Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick, K., Oberbauer, S. F., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E., Prajapati, P., Prueger, J., Quinton, W. L., Richardson, A. D., Russell, E. S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C., Stuart-Haëntjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A., Ueyama, M., Vargas, R., Wood, J. D., Zona, D. (2021) Representativeness Of Eddy-Covariance Flux Footprints For Areas Surrounding Ameriflux Sites, Agricultural And Forest Meteorology, 301-302, 108350. https://doi.org/10.1016/j.agrformet.2021.108350
2018 Chu, H., Baldocchi, D. D., Poindexter, C., Abraha, M., Desai, A. R., Bohrer, G., Arain, M. A., Griffis, T., Blanken, P. D., O'Halloran, T. L., Thomas, R. Q., Zhang, Q., Burns, S. P., Frank, J. M., Christian, D., Brown, S., Black, T. A., Gough, C. M., Law, B. E., Lee, X., Chen, J., Reed, D. E., Massman, W. J., Clark, K., Hatfield, J., Prueger, J., Bracho, R., Baker, J. M., Martin, T. A. (2018) Temporal Dynamics Of Aerodynamic Canopy Height Derived From Eddy Covariance Momentum Flux Data Across North American Flux Networks, Geophysical Research Letters, 45, 9275–9287. https://doi.org/10.1029/2018GL079306
2018 Nagai, S., Akitsu, T., Saitoh, T. M., Busey, R. C., Fukuzawa, K., Honda, Y., Ichie, T., Ide, R., Ikawa, H., Iwasaki, A., Iwao, K., Kajiwara, K., Kang, S., Kim, Y., Khoon, K. L., Kononov, A. V., Kosugi, Y., Maeda, T., Mamiya, W., Matsuoka, M., Maximov, T. C., Menzel, A., Miura, T., Mizunuma, T., Morozumi, T., Motohka, T., Muraoka, H., Nagano, H., Nakai, T., Nakaji, T., Oguma, H., Ohta, T., Ono, K., Pungga, R. A., Petrov, R. E., Sakai, R., Schunk, C., Sekikawa, S., Shakhmatov, R., Son, Y., Sugimoto, A., Suzuki, R., Takagi, K., Takanashi, S., Tei, S., Tsuchida, S., Yamamoto, H., Yamasaki, E., Yamashita, M., Yoon, T. K., Yoshida, T., Yoshimura, M., Yoshitake, S., Wilkinson, M., Wingate, L., Nasahara, K. N. (2018) 8 Million Phenological And Sky Images From 29 Ecosystems From The Arctic To The Tropics: The Phenological Eyes Network, Ecological Research, . https://doi.org/10.1007/s11284-018-1633-x
2018 Saito, K., Iwahana, G., Ikawa, H., Nagano, H., Busey, R. C. (2018) Links Between Annual Surface Temperature Variation And Land Cover Heterogeneity For A Boreal Forest As Characterized By Continuous, Fibre-Optic Dts Monitoring, Geoscientific Instrumentation, Methods And Data Systems, 7(3), 223-234. https://doi.org/10.5194/gi-7-223-2018
2018 Fischer, R., Walsh, J. E., Euskirchen, E. S., Bieniek, P. A. (2018) Regional Climate Model Simulation Of Surface Moisture Flux Variations In Northern Terrestrial Regions, Atmospheric And Climate Sciences, 08(01), 29-54. https://doi.org/10.4236/acs.2018.81003
2018 Kobayashi, H., Nagai, S., Kim, Y., Yang, W., Ikeda, K., Ikawa, H., Nagano, H., Suzuki, R. (2018) In Situ Observations Reveal How Spectral Reflectance Responds To Growing Season Phenology Of An Open Evergreen Forest In Alaska, Remote Sensing, 10(7), 1071. https://doi.org/doi:10.3390/rs10071071
2018 Xinchen Lu , Xiao Cheng, Xianglan Li Jiquan Chen, Minmin Sun, Ming Ji, Hong He, Siyu Wang, Sen Li, Jianwu Tang (2018) Seasonal patterns of canopy photosynthesis captured by remotely sensed sun-induced fluorescence and vegetation indexes in mid-to-high latitude forests: A cross-platform comparison, Science of the Total Environment, 644, 439-451. https://doi.org/org/10.1016/j.scitotenv.2018.06.269
2017 Byun, E., Yang, J., Kim, Y., Ahn, J. (2017) Trapped Greenhouse Gases In The Permafrost Active Layer: Preliminary Results For Methane Peaks In Vertical Profiles Of Frozen Alaskan Soil Cores, Permafrost And Periglacial Processes, 28(2), 477-484. https://doi.org/10.1002/ppp.1935
2018 Tripathi, B. M., Kim, M., Kim, Y., Byun, E., Yang, J., Ahn, J., Lee, Y. K. (2018) Variations In Bacterial And Archaeal Communities Along Depth Profiles Of Alaskan Soil Cores, Scientific Reports, 8(1), . https://doi.org/10.1038/s41598-017-18777-x
2017 Byun, E., Yang, J., Kim, Y., Ahn, J. (2017) Trapped Greenhouse Gases In The Permafrost Active Layer: Preliminary Results For Methane Peaks In Vertical Profiles Of Frozen Alaskan Soil Cores, Permafrost And Periglacial Processes, 28(2), 477-484. https://doi.org/10.1002/ppp.1935
2016 Ueyama, M., Tahara, N., Iwata, H., Euskirchen, E. S., Ikawa, H., Kobayashi, H., Nagano, H., Nakai, T., and Harazono, Y. (2016) Optimization of a biochemical model with eddy covariance measurements in black spruce forests of Alaska for estimating CO2 fertilization effects, Agric. Forest Meteorol., 222, 98-111.
2014 Ueyama, M., Kudo, S., Iwama, C., Nagano, H., Kobayashi, H., Harazono, Y. and Yoshikawa, K. (2014) Does summer warming reduce black spruce productivity in interior Alaska?, J. Forest Res., 20, 52-59.
2016 Ueyama, M., Tahara, N., Iwata, H., Euskirchen, E. S., Ikawa, H., Kobayashi, H., Nagano, H., Nakai, T., Harazono, Y. (2016) Optimization Of A Biochemical Model With Eddy Covariance Measurements In Black Spruce Forests Of Alaska For Estimating Co 2 Fertilization Effects, Agricultural And Forest Meteorology, 222, 98-111. https://doi.org/10.1016/j.agrformet.2016.03.007
2013 Suzuki, R., Kim, Y., Ishii, R. (2013) Sensitivity Of The Backscatter Intensity Of Alos/Palsar To The Above-Ground Biomass And Other Biophysical Parameters Of Boreal Forest In Alaska, Polar Science, 7(2), 100-112. https://doi.org/10.1016/j.polar.2013.03.001
2017 Yang, W., Kobayashi, H., Chen, X., Nasahara, K. N., Suzuki, R., Kondoh, A. (2017) Modeling Three-Dimensional Forest Structures To Drive Canopy Radiative Transfer Simulations Of Bidirectional Reflectance Factor, International Journal Of Digital Earth, 1-20. https://doi.org/10.1080/17538947.2017.1353146
2018 Nagano, H., Ikawa, H., Nakai, T., Matsushima-Yashima, M., Kobayashi, H., Kim, Y., Suzuki, R. (2018) Extremely Dry Environment Down-Regulates Nighttime Respiration Of A Black Spruce Forest In Interior Alaska, Agricultural And Forest Meteorology, 249, 297-309. https://doi.org/10.1016/j.agrformet.2017.11.001
2016 Ueyama, M., Tahara, N., Iwata, H., Euskirchen, E. S., Ikawa, H., Kobayashi, H., Nagano, H., Nakai, T., Harazono, Y. (2016) Optimization Of A Biochemical Model With Eddy Covariance Measurements In Black Spruce Forests Of Alaska For Estimating Co 2 Fertilization Effects, Agricultural And Forest Meteorology, 222, 98-111. https://doi.org/10.1016/j.agrformet.2016.03.007
2013 Nagai, S., Nakai, T., Saitoh, T. M., Busey, R. C., Kobayashi, H., Suzuki, R., Muraoka, H., Kim, Y. (2013) Seasonal Changes In Camera-Based Indices From An Open Canopy Black Spruce Forest In Alaska, And Comparison With Indices From A Closed Canopy Evergreen Coniferous Forest In Japan, Polar Science, 7(2), 125-135. https://doi.org/10.1016/j.polar.2012.12.001
2014 Kobayashi, H., Suzuki, R., Nagai, S., Nakai, T., Kim, Y. (2014) Spatial Scale And Landscape Heterogeneity Effects On Fapar In An Open-Canopy Black Spruce Forest In Interior Alaska, Ieee Geoscience And Remote Sensing Letters, 11(2), 564-568. https://doi.org/10.1109/LGRS.2013.2278426
2015 Ikawa, H., Nakai, T., Busey, R. C., Kim, Y., Kobayashi, H., Nagai, S., Ueyama, M., Saito, K., Nagano, H., Suzuki, R., Hinzman, L. (2015) Understory Co 2 , Sensible Heat, And Latent Heat Fluxes In A Black Spruce Forest In Interior Alaska, Agricultural And Forest Meteorology, 214-215, 80-90. https://doi.org/10.1016/j.agrformet.2015.08.247
2016 Kobayashi, H., Yunus, A. P., Nagai, S., Sugiura, K., Kim, Y., Van Dam, B., Nagano, H., Zona, D., Harazono, Y., Bret-Harte, M. S., Ichii, K., Ikawa, H., Iwata, H., Oechel, W. C., Ueyama, M., Suzuki, R. (2016) Latitudinal Gradient Of Spruce Forest Understory And Tundra Phenology In Alaska As Observed From Satellite And Ground-Based Data, Remote Sensing Of Environment, 177, 160-170. https://doi.org/10.1016/j.rse.2016.02.020
2015 (2015) Understory CO2, Sensible Heat, and Latent Heat Fluxes in a Black Spruce Forest in Interior Alaska, Agricultural And Forest Meteorology, 214-215, 80-90. https://doi.org/10.1016/j.agrformet.2015.08.247
2013 Nakai, T., Kim, Y., Busey, R. C., Suzuki, R., Nagai, S., Kobayashi, H., Park, H., Sugiura, K., Ito, A. (2013) Characteristics Of Evapotranspiration From A Permafrost Black Spruce Forest In Interior Alaska, Polar Science, 7(2), 136-148. https://doi.org/10.1016/j.polar.2013.03.003

US-Prr: Poker Flat Research Range Black Spruce Forest

BADM for This Site

Access the Biological, Ancillary, Disturbance and Metadata (BADM) information and data for this site.

BADM contain information for many uses, such as characterizing a site’s vegetation and soil, describing disturbance history, and defining instrumentation for flux processing. They complement the flux/met data.

* Online updates are shown on the Overview tab real time. However, downloaded BADM files will not reflect those updates until they have been reviewed for QA/QC.

US-Prr: Poker Flat Research Range Black Spruce Forest

Wind Roses

Click an image below to enlarge it, or use the navigation panel.
  • Image scale: 427m x 427m
  • Data Collected:
  • Wind roses use variables ‘WS’ and ‘WD’.
    Download Data Download Wind Rose as Image File (PNG)

    Wind Speed (m/s)

  • Graph Type
  • Wind Speed Scale
  • Wind Direction Scale (%)
  • Show Satellite Image
  • Show Wind Rose
  • Annual Average
    About Ameriflux Wind Roses
    Wind Rose Explanation
    wind rose gives a succinct view of how wind speed and direction are typically distributed at a particular location. Presented in a circular format, a wind rose shows the frequency and intensity of winds blowing from particular directions. The length of each “spoke” around the circle indicates the amount of time (frequency) that the wind blows from a particular direction. Colors along the spokes indicate categories of wind speed (intensity). Each concentric circle represents a different frequency, emanating from zero at the center to increasing frequencies at the outer circles
    Utility
    This information can be useful to gain insight into regions surrounding a flux tower that contribute to the measured fluxes, and how those regions change in dependence of the time of day and season. The wind roses presented here are for four periods of the year, and in 16 cardinal directions. Graphics are available for all sites in the AmeriFlux network based on reported wind measurements at each site.
    Data from each site can be downloaded by clicking the ‘download’ button.
    Hover the cursor over a wind rose to obtain directions, speeds and intensities.
    Note that wind roses are not equivalent to flux footprints. Specifically, the term flux footprint describes an upwind area “seen” by the instruments measuring vertical turbulent fluxes, such that heat, water, gas and momentum transport generated in this area is registered by the instruments. Wind roses, on the other hand, identify only the direction and speed of wind.
    Where do these data come from?
    The wind roses are based on observed hourly data from the sites registered with the AmeriFlux Network.
    Parameters for AmeriFlux Wind Roses
    To use wind roses for a single AmeriFlux site, the following parameters may be most useful:
    • Wind Speed Scale: Per Site
    • Wind Direction Scale (%): Per Site
    To compare wind roses from more than one single AmeriFlux site, the following parameters may be most useful:
    • Wind Speed Scale: Non-Linear
    • Wind Direction Scale (%): AmeriFlux
    Mar - Jun; 6am - 6pm
    Mar - Jun; 6pm - 6am
    Jun - Sep; 6am - 6pm
    Jun - Sep; 6pm - 6am
    Sep - Dec; 6am - 6pm
    Sep - Dec; 6pm - 6am
    Dec - Mar; 6am - 6pm
    Dec - Mar; 6pm - 6am