AmeriFlux Logo
Quick Sites: Sign in to Use

US-NR1: Niwot Ridge Forest (LTER NWT1)

PI: Peter Blanken Blanken@Colorado.EDU - University of Colorado
AncContact: Sean Burns - University of Colorado
FluxContact: Russell Monson - The University of Arizona
Lat, Long: 40.0329, -105.5464
Elevation(m): 3050
Network Affiliations: AmeriFlux, Phenocam
Vegetation IGBP: ENF (Evergreen Needleleaf Forests: Lands dominated by woody vegetation with a percent cover >60% and height exceeding 2 meters. Almost all trees remain green all year. Canopy is never without green foliage.)
Climate Koeppen: Dfc (Subarctic: severe winter, no dry season, cool summer)
Mean Annual Temp (°C): 1.5
Mean Annual Precip. (mm): 800
Flux Species Measured: CO2, H2O
Years Data Collected: AmeriFlux: 1998 - Present
The Niwot Ridge AmeriFlux site is located in a subalpine forest ecosystem just below the Continental Divide near Nederland, CO. The site is located at ...
See MoreShow Less
Research Topics:
The objectives and topics include the following: 1) Quantify the potential of forests in the mountainous Western US to sequester carbon and the effects ...
See MoreShow Less
Site Photo More Site Images
Image Credit: Sean Burns, 10/07/2014
Copyright preference: As long as credit is given
Site Publication More Site Publications
Burns, S. P., Blanken, P. D., Turnipseed, A. A., Hu, J., Monson, R. K. 2015. The Influence Of Warm-Season Precipitation On The Diel Cycle Of The Surface Energy Balance And Carbon Dioxide At A Colorado Subalpine Forest Site, Biogeosciences, 12:23, 7349-7377.

US-NR1: Niwot Ridge Forest (LTER NWT1)

Instructions for DOIs for This Site

When using DOIs for this site, use the publications and acknowledgments listed below.


Publications to use for Citations for this Site



US-NR1: Niwot Ridge Forest (LTER NWT1)

This page displays the list of downloads of data for the site {{siteId}}.

NOTE: Version refers to the version of the AmeriFlux BASE-BADM product for the site was downloaded by the user and the download count indicates the number of times the person downloaded that version. The download count indicates the number of times the person downloaded the data.

Year Range
 Showing {{startItem + 1}} to {{(startItem + items) > filtered.length ? filtered.length : (startItem + items)}} of {{filtered.length}} results

Items Per Page:  
Date Email Name Version Intended Use Intended Use Description Download Count
{{dlObject.timeStamp}} {{}} {{dlObject.displayName}} {{dlObject.version}} {{dlObject.intendedUse}} {{dlObject.comment}} {{dlObject.downloadCounter}}
No results to display
Date Name Product Version Intended Use Intended Use Description Download Count
{{dlObject.timeStamp}} {{dlObject.displayName}} {{dlObject.dataProduct}} {{dlObject.version}} {{dlObject.intendedUse}} {{dlObject.comment}} {{dlObject.downloadCounter}}
No results to display

 Showing {{startItem + 1}} to {{(startItem + items) > filtered.length ? filtered.length : (startItem + items)}} of {{filtered.length}} results

Items Per Page:  

Not Found

Uh Oh. Something is missing. Try double checking the URL and try again.

US-NR1: Niwot Ridge Forest (LTER NWT1)


The time series shows the 16-day Normalized Difference Vegetation Index (NDVI) average from the MOD13Q1 data product.
Use the slider below the time series to zoom in and out.

Includes all pixels that have acceptable quality

To view / download these data and other MOD13Q1 products for this site, visit MODIS/Terra Vegetation Indices.

For other related products, visit MODIS/VIIRS Fixed Sites Subsets Tool.


ORNL DAAC. 2018. MODIS and VIIRS Land Products Fixed Sites Subsetting and Visualization Tool. ORNL DAAC, Oak Ridge, Tennessee, USA.

Read more on how to cite these MODIS products. Data come from NASA’s MODIS instruments installed on satellites Terra and Aqua, which scan the entire Earth’s surface every one to two days.

MODIS NDVI subsetted data is not yet available for this site.

For a complete list of AmeriFlux sites, visit ORNL DAAC's MODIS/VIIRS Fixed Sites Subsets Tool.

US-NR1: Niwot Ridge Forest (LTER NWT1)

Year Publication
2019 Sullivan, R. C., Kotamarthi, V. R., Feng, Y. (2019) Recovering Evapotranspiration Trends From Biased CMIP5 Simulations And Sensitivity To Changing Climate Over North America, Journal Of Hydrometeorology, 20(8), 1619-1633.
2012 Ruehr, N. K., Martin, J. G., Law, B. E. (2012) Effects Of Water Availability On Carbon And Water Exchange In A Young Ponderosa Pine Forest: Above- And Belowground Responses, Agricultural And Forest Meteorology, 164, 136-148.
2019 Sullivan, R. C., Cook, D. R., Ghate, V. P., Kotamarthi, V. R., Feng, Y. (2019) Improved Spatiotemporal Representativeness And Bias Reduction Of Satellite-Based Evapotranspiration Retrievals Via Use Of In Situ Meteorology And Constrained Canopy Surface Resistance, Journal Of Geophysical Research: Biogeosciences, 124(2), 342-352.
2017 Euskirchen, E. S., Bret-Harte, M. S., Shaver, G. R., Edgar, C. W., Romanovsky, V. E. (2017) Long-Term Release Of Carbon Dioxide From Arctic Tundra Ecosystems In Alaska, Ecosystems, 20(5), 960-974.
2018 Chu, H., Baldocchi, D. D., Poindexter, C., Abraha, M., Desai, A. R., Bohrer, G., Arain, M. A., Griffis, T., Blanken, P. D., O'Halloran, T. L., Thomas, R. Q., Zhang, Q., Burns, S. P., Frank, J. M., Christian, D., Brown, S., Black, T. A., Gough, C. M., Law, B. E., Lee, X., Chen, J., Reed, D. E., Massman, W. J., Clark, K., Hatfield, J., Prueger, J., Bracho, R., Baker, J. M., Martin, T. A. (2018) Temporal Dynamics Of Aerodynamic Canopy Height Derived From Eddy Covariance Momentum Flux Data Across North American Flux Networks, Geophysical Research Letters, 45, 9275–9287.
2017 Albert, L. P., Keenan, T. F., Burns, S. P., Huxman, T. E., Monson, R. K. (2017) Climate Controls Over Ecosystem Metabolism: Insights From A Fifteen-Year Inductive Artificial Neural Network Synthesis For A Subalpine Forest, Oecologia, 184(1), 25-41.
2016 Berkelhammer, M., Noone, D. C., Wong, T. E., Burns, S. P., Knowles, J. F., Kaushik, A., Blanken, P. D., Williams, M. W. (2016) Convergent Approaches To Determine An Ecosystem’S Transpiration Fraction, Global Biogeochemical Cycles, 30(6), 933-951.
2014 Bowling, D. R., Ballantyne, A. P., Miller, J. B., Burns, S. P., Conway, T. J., Menzer, O., Stephens, B. B., Vaughn, B. H. (2014) Ecological Processes Dominate The13c Land Disequilibrium In A Rocky Mountain Subalpine Forest, Global Biogeochemical Cycles, 28(4), 352-370.
2018 Burns, S. P., Swenson, S. C., Wieder, W. R., Lawrence, D. M., Bonan, G. B., Knowles, J. F., Blanken, P. D. (2018) A Comparison Of The Diel Cycle Of Modeled And Measured Latent Heat Flux During The Warm Season In A Colorado Subalpine Forest, Journal Of Advances In Modeling Earth Systems, .
2015 Knowles, J. F., Burns, S. P., Blanken, P. D., Monson, R. K. (2015) Fluxes Of Energy, Water, And Carbon Dioxide From Mountain Ecosystems At Niwot Ridge, Colorado, Plant Ecology & Diversity, 8(5-6), 663-676.
2016 Burns, S. P., Maclean, G. D., Blanken, P. D., Oncley, S. P., Semmer, S. R., Monson, R. K. (2016) The Niwot Ridge Subalpine Forest Us-Nr1 Ameriflux Site – Part 1: Data Acquisition And Site Record-Keeping, Geoscientific Instrumentation, Methods And Data Systems, 5(2), 451-471.
2015 Burns, S. P., Blanken, P. D., Turnipseed, A. A., Hu, J., Monson, R. K. (2015) The Influence Of Warm-Season Precipitation On The Diel Cycle Of The Surface Energy Balance And Carbon Dioxide At A Colorado Subalpine Forest Site, Biogeosciences, 12(23), 7349-7377.
2015 Dennis Baldocchi, Cove Sturtevant (2015) Does day and night sampling reduce spurious correlation between canopy photosynthesis and ecosystem respiration?, Agricultural and Forest Meteorology, 207, 117-126.
2004 Turnipseed, A. A., Anderson, D. E., Burns, S., Blanken, P. D., Monson, R. K. (2004) Airflows And Turbulent Flux Measurements In Mountainous Terrain: Part 2: Mesoscale effects, Agricultural And Forest Meteorology, 125(3-4), 187-205.
2004 Hui, D., Wan, S., Su, B., Katul, G., Monson, R., Luo, Y. (2004) Gap-Filling Missing Data In Eddy Covariance Measurements Using Multiple Imputation (MI) For Annual Estimations, Agricultural And Forest Meteorology, 121(1-2), 93-111.
2006 Sacks, W. J., Schimel, D. S., Monson, R. K., Braswell, B. H. (2006) Model-Data Synthesis Of Diurnal And Seasonal CO2 Fluxes At Niwot Ridge, Colorado, Global Change Biology, 12(2), 240-259.
2005 Arain, M. A., Restrepo-Coupe, N. (2005) Net Ecosystem Production In A Temperate Pine Plantation In Southeastern Canada, Agricultural And Forest Meteorology, 128(3-4), 223-241.
2011 Riveros-Iregui, D.A., Hu, J., Burns, S.P., Bowling, D.R., Monson, R.K. (2011) An Interannual Assessment Of The Relationship Between The Stable Carbon Isotopic Composition Of Ecosystem Respiration And Climate In A High-Elevation Subalpine Forest, Journal Of Geophysical Research, 116(G2), 1-15.
2005 Sims, D. A., Rahman, A. F., Cordova, V. D., Baldocchi, D. D., Flanagan, L. B., Goldstein, A. H., Hollinger, D. Y., Misson, L., Monson, R. K., Schmid, H. P., Wofsy, S. C., Xu, L. (2005) Midday Values Of Gross CO2 Flux And Light Use Efficiency During Satellite Overpasses Can Be Used To Directly Estimate Eight-Day Mean Flux, Agricultural And Forest Meteorology, 131(1-2), 1-12.
2003 Sparks, J. P., Roberts, J. M., Monson, R. K. (2003) The Uptake Of Gaseous Organic Nitrogen By Leaves: A Significant Global Nitrogen Transfer Process, Geophysical Research Letters, 30(23), n/a-n/a.
1998 Reich, P. B., Walters, M. B., Ellsworth, D. S., Vose, J. M., Volin, J. C., Gresham, C., Bowman, W. D. (1998) Relationships Of Leaf Dark Respiration To Leaf Nitrogen, Specific Leaf Area And Leaf Life-Span: A Test Across Biomes And Functional Groups, Oecologia, 114(4), 471-482.
2011 Burns, S. P., Sun, J., Lenschow, D. H., Oncley, S. P., Stephens, B. B., Yi, C., Anderson, D. E., Hu, J., Monson, R. K. (2011) Atmospheric Stability Effects On Wind Fields And Scalar Mixing Within And Just Above A Subalpine Forest In Sloping Terrain, Boundary-Layer Meteorology, 138(2), 231-262.
2005 Monson, R. K., Sparks, J. P., Rosenstiel, T. N., Scott-Denton, L. E., Huxman, T. E., Harley, P. C., Turnipseed, A. A., Burns, S. P., Backlund, B., Hu, J. (2005) Climatic Influences On Net Ecosystem CO2 Exchange During The Transition From Wintertime Carbon Source To Springtime Carbon Sink In A High-Elevation, Subalpine Forest, Oecologia, 146(1), 130-147.
2002 Monson, R. K., Turnipseed, A. A., Sparks, J. P., Harley, P. C., Scott-Denton, L. E., Sparks, K., Huxman, T. E. (2002) Carbon Sequestration In A High-Elevation, Subalpine Forest, Global Change Biology, 8(5), 459-478.
2003 Turnipseed, A. A., Anderson, D. E., Blanken, P. D., Baugh, W. M., Monson, R. K. (2003) Airflows And Turbulent Flux Measurements In Mountainous Terrain: Part 1. Canopy and local effects, Agricultural And Forest Meteorology, 119(1-2), 1-21.
2005 Hibbard, K. A., Law, B. E., Reichstein, M., Sulzman, J. (2005) An Analysis Of Soil Respiration Across Northern Hemisphere Temperate Ecosystems, Biogeochemistry, 73(1), 29-70.
2002 Schimel, D.S., Kittel, T.G.F., Running, S., Monson, R.K., Turnipseed, A.A., Anderson, D. (2002) Carbon Sequestration Studied In Western U.S. Mountains, EOS, Transactions American Geophysical Union, 83(40), 445-449.
2005 Churkina, G., Schimel, D., Braswell, B. H., Xiao, X. (2005) Spatial Analysis Of Growing Season Length Control Over Net Ecosystem Exchange, Global Change Biology, 11(10), 1777-1787.
2010 Sun, J., Oncley, S. P., Burns, S. P., Stephens, B. B., Lenschow, D. H., Campos, T., Watt, A. S., Monson, R. K., Moore, D. J., Hu, J., Tschudi, M., Schimel, D. S., Aulenbach, S., Sacks, W. J., De Wekker, S. F., Lai, C., Lamb, B., Allwine, E., Coons, T., Ojima, D., Ellsworth, P. Z., Sternberg, L. S., Zhong, S., Clements, C., Anderson, D. E. (2010) A Multiscale And Multidisciplinary Investigation Of Ecosystem–Atmosphere CO2 Exchange Over The Rocky Mountains Of Colorado, Bulletin Of The American Meteorological Society, 91(2), 209-230.
2011 Desai, A.R., Moore, D.J.P., Ahue, W.K.M., Wilkes, P.T.V., De Wekker, S.F.J., Brooks, B.G., Campos, T.L., Stephens, B.B., Monson, R.K., Burns, S.P., Quaife, T., Aulenbach, S.M., Schimel, D.S. (2011) Seasonal Pattern Of Regional Carbon Balance In The Central Rocky Mountains From Surface And Airborne Measurements, Journal Of Geophysical Research, 116(G04009), 1-16.
2004 Yi, C., Li, R., Bakwin, P. S., Desai, A., Ricciuto, D. M., Burns, S. P., Turnipseed, A. A., Wofsy, S. C., Munger, J. W., Wilson, K., Monson, R. K. (2004) A Nonparametric Method For Separating Photosynthesis And Respiration Components In CO2 Flux Measurements, Geophysical Research Letters, 31(17), n/a-n/a.
2003 Huxman, T. E., Turnipseed, A. A., Sparks, J. P., Harley, P. C., Monson, R. K. (2003) Temperature As A Control Over Ecosystem CO2 Fluxes In A High-Elevation, Subalpine Forest, Oecologia, 134(4), 537-546.
2002 Turnipseed, A., Blanken, P., Anderson, D., Monson, R. (2002) Energy Budget Above A High-Elevation Subalpine Forest In Complex Topography, Agricultural And Forest Meteorology, 110(3), 177-201.
2005 Bowling, D. R., Burns, S. P., Conway, T. J., Monson, R. K., White, J. W. (2005) Extensive Observations Of Co2carbon Isotope Content In And Above A High-Elevation Subalpine Forest, Global Biogeochemical Cycles, 19(3), n/a-n/a.
2005 Yi, C., Monson, R. K., Zhai, Z., Anderson, D. E., Lamb, B., Allwine, G., Turnipseed, A. A., Burns, S. P. (2005) Modeling And Measuring The Nocturnal Drainage Flow In A High-Elevation, Subalpine Forest With Complex Terrain, Journal Of Geophysical Research, 110(D22303), n/a-n/a.
2016 Zscheischler, J., Fatichi, S., Wolf, S., Blanken, P., Bohrer, G., Clark, K., Desai, A., Hollinger, D., Keenan, T., Novick, K.A., Seneviratne, S.I. (2016) Short-term favorable weather conditions are an important control of interannual variability in carbon and water fluxes, Journal of Geophysical Research - Biogeosciences, 121(8), 2186-2198.
2016 Wolf, S., Keenan, T.F., Fisher, J.B., Baldocchi, D.D., Desai, A.R., Richardson, A.D., Scott, R.L., Law, B.E., Litvak, M.E., Brunsell, N.A., Peters, W., van der Laan-Luijkx, I.T. (2016) Warm spring reduced carbon cycle impact of the 2012 US summer drought, Proceedings of the National Academy of Sciences, 113(21), 5880-5885.

US-NR1: Niwot Ridge Forest (LTER NWT1)

BADM for This Site

Access the Biological, Ancillary, Disturbance and Metadata (BADM) information and data for this site.

BADM contain information for many uses, such as characterizing a site’s vegetation and soil, describing disturbance history, and defining instrumentation for flux processing. They complement the flux/met data.

* Online updates are shown on the Overview tab real time. However, downloaded BADM files will not reflect those updates until they have been reviewed for QA/QC.

US-NR1: Niwot Ridge Forest (LTER NWT1)

Wind Roses

Click an image below to enlarge it, or use the navigation panel.
  • Image scale: 777m x 777m
  • Data Collected:
  • Wind roses use variables ‘WS’ and ‘WD’.
    Download Data Download Wind Rose as Image File (PNG)

    Wind Speed (m/s)

  • Graph Type
  • Wind Speed Scale
  • Wind Direction Scale (%)
  • Show Satellite Image
  • Show Wind Rose
  • Annual Average
    About Ameriflux Wind Roses
    Wind Rose Explanation
    wind rose gives a succinct view of how wind speed and direction are typically distributed at a particular location. Presented in a circular format, a wind rose shows the frequency and intensity of winds blowing from particular directions. The length of each “spoke” around the circle indicates the amount of time (frequency) that the wind blows from a particular direction. Colors along the spokes indicate categories of wind speed (intensity). Each concentric circle represents a different frequency, emanating from zero at the center to increasing frequencies at the outer circles
    This information can be useful to gain insight into regions surrounding a flux tower that contribute to the measured fluxes, and how those regions change in dependence of the time of day and season. The wind roses presented here are for four periods of the year, and in 16 cardinal directions. Graphics are available for all sites in the AmeriFlux network based on reported wind measurements at each site.
    Data from each site can be downloaded by clicking the ‘download’ button.
    Hover the cursor over a wind rose to obtain directions, speeds and intensities.
    Note that wind roses are not equivalent to flux footprints. Specifically, the term flux footprint describes an upwind area “seen” by the instruments measuring vertical turbulent fluxes, such that heat, water, gas and momentum transport generated in this area is registered by the instruments. Wind roses, on the other hand, identify only the direction and speed of wind.
    Where do these data come from?
    The wind roses are based on observed hourly data from the sites registered with the AmeriFlux Network.
    Parameters for AmeriFlux Wind Roses
    To use wind roses for a single AmeriFlux site, the following parameters may be most useful:
    • Wind Speed Scale: Per Site
    • Wind Direction Scale (%): Per Site
    To compare wind roses from more than one single AmeriFlux site, the following parameters may be most useful:
    • Wind Speed Scale: Non-Linear
    • Wind Direction Scale (%): AmeriFlux
    Mar - Jun; 6am - 6pm
    Mar - Jun; 6pm - 6am
    Jun - Sep; 6am - 6pm
    Jun - Sep; 6pm - 6am
    Sep - Dec; 6am - 6pm
    Sep - Dec; 6pm - 6am
    Dec - Mar; 6am - 6pm
    Dec - Mar; 6pm - 6am