Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements …
Journal: Agricultural And Forest Meteorology, Volume 301-302: 108350 (2021). DOI: 10.1016/j.agrformet.2021.108350 Sites: CA-ARB, CA-ARF, CA-Ca1, CA-Ca2, CA-Ca3, CA-Cbo, CA-DBB, CA-ER1, CA-Gro, CA-Let, CA-Man, CA-MR3, CA-MR5, CA-Na1, CA-NS1, CA-NS2, CA-NS3, CA-NS4, CA-NS5, CA-NS6, CA-NS7, CA-Oas, CA-Obs, CA-Ojp, CA-Qc2, CA-Qcu, CA-Qfo, CA-SCC, CA-SF1, CA-SF2, CA-SF3, CA-SJ2, CA-SJ3, CA-TP1, CA-TP3, CA-TP4, CA-TPD, CA-WP1, US-A03, US-A10, US-A32, US-A74, US-ADR, US-AR1, US-AR2, US-ARb, US-ARc, US-ARM, US-Aud, US-Bar, US-Bi1, US-Bi2, US-Bkg, US-Blk, US-Blo, US-Bn1, US-Bn2, US-Bn3, US-Bo1, US-Bo2, US-Br3, US-CaV, US-Ced, US-CF1, US-CF2, US-CF3, US-CF4, US-ChR, US-Cop, US-CPk, US-CRT, US-Ctn, US-Dia, US-Dix, US-Dk1, US-Dk2, US-Dk3, US-EDN, US-Elm, US-EML, US-Fmf, US-FPe, US-FR2, US-FR3, US-Fuf, US-Fwf, US-GLE, US-GMF, US-Goo, US-Ha1, US-Ha2, US-Hn2, US-Hn3, US-Ho1, US-Ho2, US-Ho3, US-IB1, US-IB2, US-Ivo, US-KFS, US-KLS, US-Kon, US-KS1, US-KS2, US-KUT, US-Lin, US-Los, US-LPH, US-LWW, US-Me1, US-Me2, US-Me3, US-Me4, US-Me5, US-Me6, US-MMS, US-MOz, US-Mpj, US-MRf, US-MtB, US-Myb, US-NC1, US-NC2, US-NC3, US-NC4, US-Ne1, US-Ne2, US-Ne3, US-NGB, US-NR1, US-Oho, US-ORv, US-PHM, US-Pon, US-Prr, US-RC1, US-RC2, US-RC3, US-RC4, US-RC5, US-Rls, US-Rms, US-Ro1, US-Ro2, US-Ro5, US-Ro6, US-Rpf, US-Rws, US-SdH, US-Seg, US-Ses, US-SFP, US-Shd, US-Skr, US-Slt, US-Snd, US-Sne, US-Snf, US-SO2, US-SO3, US-SO4, US-SP1, US-SP2, US-SP3, US-SRC, US-SRG, US-SRM, US-Srr, US-Sta, US-StJ, US-Syv, US-Ton, US-Tw1, US-Tw2, US-Tw3, US-Tw4, US-Tw5, US-Twt, US-Uaf, US-UMB, US-UMd, US-Var, US-Vcm, US-Vcp, US-Vcs, US-WBW, US-WCr, US-Wdn, US-Wgr, US-Whs, US-Wi0, US-Wi1, US-Wi3, US-Wi4, US-Wi5, US-Wi6, US-Wi7, US-Wi8, US-Wi9, US-Wjs, US-Wkg, US-Wlr, US-Wpp, US-WPT, US-Wrc, US-xBR, US-xCP, US-xDL, US-xHA, US-xKA, US-xKZ, US-xRM, US-xSR, US-xWD
Climate extremes such as heat waves and droughts are projected to occur more Frequently with increasing temperature and an intensified hydrological cycle. It is Important to understand and quantify how forest carbon fluxes respond to heat and drought stress. In this study, we developed a series of daily indices of sensitivity to …
Journal: Global Change Biology, Volume 26 (2): 901-918 (2020). DOI: 10.1111/gcb.14843 Sites: CA-Ca1, CA-Ca2, CA-Ca3, CA-Gro, CA-Man, CA-NS1, CA-NS2, CA-NS3, CA-NS4, CA-NS5, CA-Oas, CA-Obs, CA-Qfo, CA-SF2, CA-TP1, CA-TP2, CA-TP3, CA-TP4, US-Bar, US-Blo, US-GLE, US-Ha1, US-Ho1, US-Me2, US-Me3, US-Me6, US-MMS, US-NR1, US-Oho, US-PFa, US-Prr, US-Syv, US-UMB, US-UMd, US-WCr
Evapotranspiration (ET) is a key component of the atmospheric and terrestrial water and energy budgets. Satellite‐based vegetation index approaches have used remotely sensed vegetation and reanalysis meteorological properties with surface energy balance models to estimate global ET (MOD16 ET). We reconstructed satellite retrievals …
Journal: Journal Of Geophysical Research: Biogeosciences, Volume 124 (2): 342-352 (2019). DOI: 10.1029/2018JG004744 Sites: US-AR1, US-AR2, US-ARM, US-Blo, US-Cop, US-GLE, US-Ha1, US-Los, US-Me2, US-Me6, US-MMS, US-Myb, US-Ne1, US-Ne2, US-Ne3, US-NR1, US-ORv, US-PFa, US-SRG, US-SRM, US-Syv, US-Ton, US-Tw1, US-Tw2, US-Tw3, US-Tw4, US-Twt, US-UMB, US-UMd, US-Var, US-WCr, US-Whs, US-Wkg
Future projections of evapotranspiration (ET) are of critical importance for agricultural and freshwater management and for predicting land–atmosphere feedbacks on the climate system. However, ET from phase 5 of the Coupled Model Intercomparison Project (CMIP5) simulations exhibits substantial biases, bolstering little confidence …
Journal: Journal Of Hydrometeorology, Volume 20 (8): 1619-1633 (2019). DOI: 10.1175/JHM-D-18-0259.1 Sites: US-AR1, US-AR2, US-ARM, US-Blo, US-Cop, US-GLE, US-Ha1, US-Los, US-Me2, US-Me6, US-MMS, US-Myb, US-Ne1, US-Ne2, US-Ne3, US-NR1, US-ORv, US-PFa, US-SRG, US-SRM, US-Syv, US-Ton, US-Tw1, US-Tw2, US-Tw3, US-Tw4, US-Twt, US-UMB, US-UMd, US-Var, US-WCr, US-Whs, US-Wkg
Journal: Environmental Research Letters, Volume 14 (7): 074023 (2019). DOI: 10.1088/1748-9326/ab2603 Sites: CA-NS1, CA-NS2, CA-NS3, CA-NS4, CA-NS6, CA-NS7, US-AR1, US-AR2, US-ARM, US-Blo, US-GLE, US-KS2, US-Me2, US-MMS, US-Ne1, US-Ne2, US-Ne3, US-NR1, US-SRG, US-SRM, US-Syv, US-Ton, US-UMB, US-Var, US-WCr, US-Whs
Aerodynamic canopy height (ha) is the effective height of vegetation canopy for its influence on atmospheric fluxes and is a key parameter of surface‐atmosphere coupling. However, methods to estimate ha from data are limited. This synthesis evaluates the applicability and robustness of the calculation of ha from eddy covariance …
Journal: Geophysical Research Letters, Volume 45: 9275–9287 (2018). DOI: 10.1029/2018GL079306 Sites: BR-Sa1, BR-Sa3, CA-Ca1, CA-Ca2, CA-Ca3, CA-Cbo, CA-ER1, CA-Gro, CA-Man, CA-NS1, CA-NS2, CA-NS3, CA-NS4, CA-NS5, CA-Oas, CA-Obs, CA-Ojp, CA-Qfo, CA-TP1, CA-TP3, CA-TP4, CA-TPD, US-Blo, US-Bn1, US-Bn2, US-Br1, US-Br3, US-Ced, US-CPk, US-CRT, US-Dix, US-Dk2, US-Dk3, US-Fmf, US-Fuf, US-GBT, US-GLE, US-GMF, US-Ha1, US-Ha2, US-Ho2, US-Ho3, US-IB1, US-IB2, US-KL1, US-KL2, US-KL3, US-KM1, US-KM2, US-KM3, US-KM4, US-Me2, US-Me3, US-Me4, US-Me5, US-Me6, US-MMS, US-MRf, US-NC1, US-NC2, US-Ne1, US-Ne2, US-Ne3, US-NR1, US-Oho, US-Prr, US-Ro1, US-Ro3, US-SB1, US-Shd, US-Skr, US-Slt, US-SP1, US-SP2, US-SP3, US-SRM, US-Srr, US-Syv, US-Ton, US-Tw3, US-Twt, US-UMB, US-UMd, US-Var, US-Vcm, US-WBW, US-Wi0, US-Wi1, US-Wi3, US-Wi4, US-Wi5, US-Wi8, US-Wi9, US-Wrc
Journal: Environmental Research Letters, Volume 13 (12): 124018 (2018). DOI: 10.1088/1748-9326/aaeaeb Sites: US-Syv, US-WCr
Journal: Nature Climate Change, Volume 6 (11): 1023-1027 (2016). DOI: 10.1038/nclimate3114 Sites: US-ARM, US-Bar, US-Blk, US-Blo, US-Bo1, US-Br3, US-Dk1, US-Dk2, US-Dk3, US-Fmf, US-FR2, US-Fuf, US-GLE, US-IB1, US-IB2, US-KFS, US-Kon, US-KS2, US-Me1, US-Me2, US-MMS, US-MOz, US-MRf, US-Ne1, US-Ne3, US-NR1, US-Oho, US-SRG, US-SRM, US-Syv, US-Ton, US-UMB, US-Var, US-WBW, US-WCr, US-Whs, US-Wkg
Journal: Journal Of Geophysical Research: Biogeosciences, Volume 119 (7): 1458-1473 (2014). DOI: 10.1002/2014JG002623 Sites: CA-Ca1, CA-Gro, CA-Let, CA-Oas, CA-Ojp, CA-Qfo, US-ARM, US-Dk3, US-Ha1, US-Ho1, US-IB2, US-Me2, US-MMS, US-MOz, US-Ne1, US-Ne2, US-Ne3, US-NR1, US-PFa, US-Syv, US-Ton, US-UMB, US-Var, US-WCr
Journal: Agricultural And Forest Meteorology, Volume 171-172: 31-45 (2013). DOI: 10.1016/j.agrformet.2012.11.023 Sites: CA-Ca1, CA-Ca2, CA-Ca3, CA-Gro, CA-Let, CA-Mer, CA-NS1, CA-Oas, CA-Obs, CA-Ojp, CA-Qfo, CA-SJ1, CA-SJ2, CA-SJ3, CA-TP4, CA-WP1, US-ARM, US-Dk3, US-Ha1, US-Ho1, US-IB1, US-Los, US-Me3, US-Me5, US-MMS, US-MOz, US-Ne1, US-Ne2, US-Ne3, US-NR1, US-Shd, US-SO2, US-Syv, US-Ton, US-UMB, US-Var, US-WCr