Publication Search
Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn, M. S., Metzger, S., Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi, D., Bernacchi, C., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Bracho, R., Brown, S., Brunsell, N. A., Chen, J., Chen, X., Clark, K., Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A., Gough, C. M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., Ikawa, H., Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H., Kobayashi, H., Kolb, T., Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick, K., Oberbauer, S. F., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E., Prajapati, P., Prueger, J., Quinton, W. L., Richardson, A. D., Russell, E. S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C., Stuart-Haëntjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A., Ueyama, M., Vargas, R., Wood, J. D., Zona, D.
Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements …
Journal: Agricultural And Forest Meteorology, Volume 301-302: 108350 (2021), ISBN . DOI: 10.1016/j.agrformet.2021.108350 Sites: CA-ARB, CA-ARF, CA-Ca1, CA-Ca2, CA-Ca3, CA-Cbo, CA-DBB, CA-ER1, CA-Gro, CA-Let, CA-Man, CA-MR3, CA-MR5, CA-Na1, CA-NS1, CA-NS2, CA-NS3, CA-NS4, CA-NS5, CA-NS6, CA-NS7, CA-Oas, CA-Obs, CA-Ojp, CA-Qc2, CA-Qcu, CA-Qfo, CA-SCC, CA-SF1, CA-SF2, CA-SF3, CA-SJ2, CA-SJ3, CA-TP1, CA-TP3, CA-TP4, CA-TPD, CA-WP1, US-A03, US-A10, US-A32, US-A74, US-ADR, US-AR1, US-AR2, US-ARb, US-ARc, US-ARM, US-Aud, US-Bar, US-Bi1, US-Bi2, US-Bkg, US-Blk, US-Blo, US-Bn1, US-Bn2, US-Bn3, US-Bo1, US-Bo2, US-Br3, US-CaV, US-Ced, US-CF1, US-CF2, US-CF3, US-CF4, US-ChR, US-Cop, US-CPk, US-CRT, US-Ctn, US-Dia, US-Dix, US-Dk1, US-Dk2, US-Dk3, US-EDN, US-Elm, US-EML, US-Fmf, US-FPe, US-FR2, US-FR3, US-Fuf, US-Fwf, US-GLE, US-GMF, US-Goo, US-Ha1, US-Ha2, US-Hn2, US-Hn3, US-Ho1, US-Ho2, US-Ho3, US-IB1, US-IB2, US-Ivo, US-KFS, US-KLS, US-Kon, US-KS1, US-KS2, US-KUT, US-Lin, US-Los, US-LPH, US-LWW, US-Me1, US-Me2, US-Me3, US-Me4, US-Me5, US-Me6, US-MMS, US-MOz, US-Mpj, US-MRf, US-MtB, US-Myb, US-NC1, US-NC2, US-NC3, US-NC4, US-Ne1, US-Ne2, US-Ne3, US-NGB, US-NR1, US-Oho, US-ORv, US-PHM, US-Pon, US-Prr, US-RC1, US-RC2, US-RC3, US-RC4, US-RC5, US-Rls, US-Rms, US-Ro1, US-Ro2, US-Ro5, US-Ro6, US-Rpf, US-Rws, US-SdH, US-Seg, US-Ses, US-SFP, US-Shd, US-Skr, US-Slt, US-Snd, US-Sne, US-Snf, US-SO2, US-SO3, US-SO4, US-SP1, US-SP2, US-SP3, US-SRC, US-SRG, US-SRM, US-Srr, US-Sta, US-StJ, US-Syv, US-Ton, US-Tw1, US-Tw2, US-Tw3, US-Tw4, US-Tw5, US-Twt, US-Uaf, US-UMB, US-UMd, US-Var, US-Vcm, US-Vcp, US-Vcs, US-WBW, US-WCr, US-Wdn, US-Wgr, US-Whs, US-Wi0, US-Wi1, US-Wi3, US-Wi4, US-Wi5, US-Wi6, US-Wi7, US-Wi8, US-Wi9, US-Wjs, US-Wkg, US-Wlr, US-Wpp, US-WPT, US-Wrc, US-xBR, US-xCP, US-xDL, US-xHA, US-xKA, US-xKZ, US-xRM, US-xSR, US-xWD
Xu, B., Arain, M. A., Black, T. A., Law, B. E., Pastorello, G. Z., Chu, H.
Climate extremes such as heat waves and droughts are projected to occur more Frequently with increasing temperature and an intensified hydrological cycle. It is Important to understand and quantify how forest carbon fluxes respond to heat and drought stress. In this study, we developed a series of daily indices of sensitivity to …
Journal: Global Change Biology, Volume 26 (2): 901-918 (2020), ISBN . DOI: 10.1111/gcb.14843 Sites: CA-Ca1, CA-Ca2, CA-Ca3, CA-Gro, CA-Man, CA-NS1, CA-NS2, CA-NS3, CA-NS4, CA-NS5, CA-Oas, CA-Obs, CA-Qfo, CA-SF2, CA-TP1, CA-TP2, CA-TP3, CA-TP4, US-Bar, US-Blo, US-GLE, US-Ha1, US-Ho1, US-Me2, US-Me3, US-Me6, US-MMS, US-NR1, US-Oho, US-PFa, US-Prr, US-Syv, US-UMB, US-UMd, US-WCr
Chu, H., Baldocchi, D. D., Poindexter, C., Abraha, M., Desai, A. R., Bohrer, G., Arain, M. A., Griffis, T., Blanken, P. D., O'Halloran, T. L., Thomas, R. Q., Zhang, Q., Burns, S. P., Frank, J. M., Christian, D., Brown, S., Black, T. A., Gough, C. M., Law, B. E., Lee, X., Chen, J., Reed, D. E., Massman, W. J., Clark, K., Hatfield, J., Prueger, J., Bracho, R., Baker, J. M., Martin, T. A.
Aerodynamic canopy height (ha) is the effective height of vegetation canopy for its influence on atmospheric fluxes and is a key parameter of surface‐atmosphere coupling. However, methods to estimate ha from data are limited. This synthesis evaluates the applicability and robustness of the calculation of ha from eddy covariance …
Journal: Geophysical Research Letters, Volume 45: 9275–9287 (2018), ISBN . DOI: 10.1029/2018GL079306 Sites: BR-Sa1, BR-Sa3, CA-Ca1, CA-Ca2, CA-Ca3, CA-Cbo, CA-ER1, CA-Gro, CA-Man, CA-NS1, CA-NS2, CA-NS3, CA-NS4, CA-NS5, CA-Oas, CA-Obs, CA-Ojp, CA-Qfo, CA-TP1, CA-TP3, CA-TP4, CA-TPD, US-Blo, US-Bn1, US-Bn2, US-Br1, US-Br3, US-Ced, US-CPk, US-CRT, US-Dix, US-Dk2, US-Dk3, US-Fmf, US-Fuf, US-GBT, US-GLE, US-GMF, US-Ha1, US-Ha2, US-Ho2, US-Ho3, US-IB1, US-IB2, US-KL1, US-KL2, US-KL3, US-KM1, US-KM2, US-KM3, US-KM4, US-Me2, US-Me3, US-Me4, US-Me5, US-Me6, US-MMS, US-MRf, US-NC1, US-NC2, US-Ne1, US-Ne2, US-Ne3, US-NR1, US-Oho, US-Prr, US-Ro1, US-Ro3, US-SB1, US-Shd, US-Skr, US-Slt, US-SP1, US-SP2, US-SP3, US-SRM, US-Srr, US-Syv, US-Ton, US-Tw3, US-Twt, US-UMB, US-UMd, US-Var, US-Vcm, US-WBW, US-Wi0, US-Wi1, US-Wi3, US-Wi4, US-Wi5, US-Wi8, US-Wi9, US-Wrc
Xie, J., Chen, J., Sun, G., Zha, T., Yang, B., Chu, H., Liu, J., Wan, S., Zhou, C., Ma, H., Bourque, C. P., Shao, C., John, R., Ouyang, Z.
The impacts of extreme weather events on water–carbon (C) coupling and ecosystem-scale water use efficiency (WUE) over a long term are poorly understood. We analyzed the changes in ecosystem water use efficiency (WUE) from 10 years of eddy-covariance measurements (2004–2013) over an oak-dominated temperate forest in Ohio, USA. …
Journal: Agricultural And Forest Meteorology, Volume 218-219: 209-217 (2016), ISBN . DOI: 10.1016/j.agrformet.2015.12.059 Sites: US-Oho
Chu, H., Chen, J., Gottgens, J. F., Desai, A. R., Ouyang, Z., Qian, S. S.
Recent climate variability and anomaly in the Great Lakes region provided a valuable opportunity in examining the response and regulation of ecosystem carbon cycling across different ecosystems. A simple Bayesian hierarchical model was developed and fitted against three-year (2011–2013) net ecosystem CO2 exchange (FCO2) data observed …
Journal: Agricultural And Forest Meteorology, Volume 220: 50-68 (2016), ISBN . DOI: 10.1016/j.agrformet.2016.01.008 Sites: US-CRT, US-Oho, US-WPT
Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G., Oishi, A., Papuga, S. A., Blanken, P. D., Noormets, A., Sulman, B. N., Scott, R. L., Wang, L., Phillips, R. P.
Journal: Nature Climate Change, Volume 6 (11): 1023-1027 (2016), ISBN . DOI: 10.1038/nclimate3114 Sites: US-ARM, US-Bar, US-Blk, US-Blo, US-Bo1, US-Br3, US-Dk1, US-Dk2, US-Dk3, US-Fmf, US-FR2, US-Fuf, US-GLE, US-IB1, US-IB2, US-KFS, US-Kon, US-KS2, US-Me1, US-Me2, US-MMS, US-MOz, US-MRf, US-Ne1, US-Ne3, US-NR1, US-Oho, US-SRG, US-SRM, US-Syv, US-Ton, US-UMB, US-Var, US-WBW, US-WCr, US-Whs, US-Wkg
Ouyang, Z., Chen, J., Becker, R., Chu, H., Xie, J., Shao, C., John, R.
Net ecosystem exchange of CO2 (NEE) in temperate forests is modulated by multiple microclimatic factors. The effects of these factors vary across time scales, with some correlated to produce confounding effects. Photosynthetically active radiation (PAR) and air temperature (Ta) are among the two most important drivers …
Journal: Ecological Complexity, Volume 19: 46-58 (2014), ISBN . DOI: 10.1016/j.ecocom.2014.04.005 Sites: US-Oho
Xie, J., Sun, G., Chu, H., Liu, J., McNulty, S. G., Noormets, A., John, R., Ouyang, Z., Zha, T., Li, H., Guan, W., Chen, J.
Water availability is one of the key environmental factors that control ecosystem functions in temperate forests. Changing climate is likely to alter the ecohydrology and other ecosystem processes, which affect forest structures and functions. We constructed a multi-year water budget (2004–2010) and quantified environmental controls …
Journal: Hydrological Processes, Volume 28 (25): 6054-6066 (2014), ISBN . DOI: 10.1002/hyp.10079 Sites: US-Oho
Xie, J., Chen, J., Sun, G., Chu, H., Noormets, A., Ouyang, Z., John, R., Wan, S., Guan, W.
Our understanding of the long-term carbon (C) cycle of temperate deciduous forests and its sensitivity to climate variability is limited due to the large temporal dynamics of C fluxes. The goal of the study was to quantify the effects of environmental variables on …
Journal: Forest Ecology And Management, Volume 313 (1): 319-328 (2014), ISBN . DOI: 10.1016/j.foreco.2013.10.032 Sites: US-Oho
Noormets, A., McNulty, S. G., DeForest, J. L., Sun, G., Li, Q., Chen, J.
- Climate change projections predict an intensifying hydrologic cycle and an increasing frequency of droughts, yet quantitative understanding of the effects on ecosystem carbon exchange remains limited.
- Here, the effect of contrasting precipitation and soil moisture dynamics were evaluated …
Journal: New Phytologist, Volume 179 (3): 818-828 (2008), ISBN . DOI: 10.1111/j.1469-8137.2008.02501.x Sites: US-Oho