Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements …
Journal: Agricultural And Forest Meteorology, Volume 301-302: 108350 (2021). DOI: 10.1016/j.agrformet.2021.108350 Sites: CA-ARB, CA-ARF, CA-Ca1, CA-Ca2, CA-Ca3, CA-Cbo, CA-DBB, CA-ER1, CA-Gro, CA-Let, CA-Man, CA-MR3, CA-MR5, CA-Na1, CA-NS1, CA-NS2, CA-NS3, CA-NS4, CA-NS5, CA-NS6, CA-NS7, CA-Oas, CA-Obs, CA-Ojp, CA-Qc2, CA-Qcu, CA-Qfo, CA-SCC, CA-SF1, CA-SF2, CA-SF3, CA-SJ2, CA-SJ3, CA-TP1, CA-TP3, CA-TP4, CA-TPD, CA-WP1, US-A03, US-A10, US-A32, US-A74, US-ADR, US-AR1, US-AR2, US-ARb, US-ARc, US-ARM, US-Aud, US-Bar, US-Bi1, US-Bi2, US-Bkg, US-Blk, US-Blo, US-Bn1, US-Bn2, US-Bn3, US-Bo1, US-Bo2, US-Br3, US-CaV, US-Ced, US-CF1, US-CF2, US-CF3, US-CF4, US-ChR, US-Cop, US-CPk, US-CRT, US-Ctn, US-Dia, US-Dix, US-Dk1, US-Dk2, US-Dk3, US-EDN, US-Elm, US-EML, US-Fmf, US-FPe, US-FR2, US-FR3, US-Fuf, US-Fwf, US-GLE, US-GMF, US-Goo, US-Ha1, US-Ha2, US-Hn2, US-Hn3, US-Ho1, US-Ho2, US-Ho3, US-IB1, US-IB2, US-Ivo, US-KFS, US-KLS, US-Kon, US-KS1, US-KS2, US-KUT, US-Lin, US-Los, US-LPH, US-LWW, US-Me1, US-Me2, US-Me3, US-Me4, US-Me5, US-Me6, US-MMS, US-MOz, US-Mpj, US-MRf, US-MtB, US-Myb, US-NC1, US-NC2, US-NC3, US-NC4, US-Ne1, US-Ne2, US-Ne3, US-NGB, US-NR1, US-Oho, US-ORv, US-PHM, US-Pon, US-Prr, US-RC1, US-RC2, US-RC3, US-RC4, US-RC5, US-Rls, US-Rms, US-Ro1, US-Ro2, US-Ro5, US-Ro6, US-Rpf, US-Rws, US-SdH, US-Seg, US-Ses, US-SFP, US-Shd, US-Skr, US-Slt, US-Snd, US-Sne, US-Snf, US-SO2, US-SO3, US-SO4, US-SP1, US-SP2, US-SP3, US-SRC, US-SRG, US-SRM, US-Srr, US-Sta, US-StJ, US-Syv, US-Ton, US-Tw1, US-Tw2, US-Tw3, US-Tw4, US-Tw5, US-Twt, US-Uaf, US-UMB, US-UMd, US-Var, US-Vcm, US-Vcp, US-Vcs, US-WBW, US-WCr, US-Wdn, US-Wgr, US-Whs, US-Wi0, US-Wi1, US-Wi3, US-Wi4, US-Wi5, US-Wi6, US-Wi7, US-Wi8, US-Wi9, US-Wjs, US-Wkg, US-Wlr, US-Wpp, US-WPT, US-Wrc, US-xBR, US-xCP, US-xDL, US-xHA, US-xKA, US-xKZ, US-xRM, US-xSR, US-xWD
Journal: Global Change Biology, Volume 26 (6): 3384-3401 (2020). DOI: 10.1111/gcb.15069 Sites: US-BRG, US-Cst, US-Cwt, US-Dk1, US-Dk2, US-Dk3, US-MMS
Journal: Nature Climate Change, Volume 6 (11): 1023-1027 (2016). DOI: 10.1038/nclimate3114 Sites: US-ARM, US-Bar, US-Blk, US-Blo, US-Bo1, US-Br3, US-Dk1, US-Dk2, US-Dk3, US-Fmf, US-FR2, US-Fuf, US-GLE, US-IB1, US-IB2, US-KFS, US-Kon, US-KS2, US-Me1, US-Me2, US-MMS, US-MOz, US-MRf, US-Ne1, US-Ne3, US-NR1, US-Oho, US-SRG, US-SRM, US-Syv, US-Ton, US-UMB, US-Var, US-WBW, US-WCr, US-Whs, US-Wkg
Above forest canopies, eddy covariance (EC) measurements of mass (CO2, H2O vapor) and energy exchange, assumed to represent ecosystem fluxes, are commonly …
Journal: Global Change Biology, Volume 12 (5): 883-896 (2006). DOI: 10.1111/j.1365-2486.2006.01131.x Sites: US-Dk1, US-Dk2, US-Dk3
Soil surface CO2 flux (RS) is overwhelmingly the product of respiration by roots (autotrophic respiration, RA) and soil organisms (heterotrophic respiration, RH). Many studies have attempted to partition RS into these two components, with highly …
Journal: Global Change Biology, Volume 10 (10): 1756-1766 (2004). DOI: 10.1111/j.1365-2486.2004.00816.x Sites: BR-Ma2, CA-Man, CA-Oas, CA-Obs, US-Dk1, US-Dk2, US-Dk3, US-Ha2, US-Me1, US-Me3, US-Me4, US-Me5, US-WBW
The magnitude of changes in carboxylation capacity in dominant plant species under long-term elevated CO2 exposure (elevated pCa) directly impacts …
Journal: Global Change Biology, Volume 10 (12): 2121-2138 (2004). DOI: 10.1111/j.1365-2486.2004.00867.x Sites: US-Dk1, US-Dk2, US-Dk3
There is growing evidence that plant stomata have evolved physiological controls to satisfy the demand for CO2 by photosynthesis while regulating water losses by …
Journal: Plant, Cell And Environment, Volume 26 (3): 339-350 (2003). DOI: 10.1046/j.1365-3040.2003.00965.x Sites: US-Dk1, US-Dk2, US-Dk3