Publication Search
Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn, M. S., Metzger, S., Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi, D., Bernacchi, C., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Bracho, R., Brown, S., Brunsell, N. A., Chen, J., Chen, X., Clark, K., Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A., Gough, C. M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., Ikawa, H., Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H., Kobayashi, H., Kolb, T., Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick, K., Oberbauer, S. F., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E., Prajapati, P., Prueger, J., Quinton, W. L., Richardson, A. D., Russell, E. S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C., Stuart-Haëntjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A., Ueyama, M., Vargas, R., Wood, J. D., Zona, D.
Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements …
Journal: Agricultural And Forest Meteorology, Volume 301-302: 108350 (2021). DOI: 10.1016/j.agrformet.2021.108350 Sites: CA-ARB, CA-ARF, CA-Ca1, CA-Ca2, CA-Ca3, CA-Cbo, CA-DBB, CA-ER1, CA-Gro, CA-Let, CA-Man, CA-MR3, CA-MR5, CA-Na1, CA-NS1, CA-NS2, CA-NS3, CA-NS4, CA-NS5, CA-NS6, CA-NS7, CA-Oas, CA-Obs, CA-Ojp, CA-Qc2, CA-Qcu, CA-Qfo, CA-SCC, CA-SF1, CA-SF2, CA-SF3, CA-SJ2, CA-SJ3, CA-TP1, CA-TP3, CA-TP4, CA-TPD, CA-WP1, US-A03, US-A10, US-A32, US-A74, US-ADR, US-AR1, US-AR2, US-ARb, US-ARc, US-ARM, US-Aud, US-Bar, US-Bi1, US-Bi2, US-Bkg, US-Blk, US-Blo, US-Bn1, US-Bn2, US-Bn3, US-Bo1, US-Bo2, US-Br3, US-CaV, US-Ced, US-CF1, US-CF2, US-CF3, US-CF4, US-ChR, US-Cop, US-CPk, US-CRT, US-Ctn, US-Dia, US-Dix, US-Dk1, US-Dk2, US-Dk3, US-EDN, US-Elm, US-EML, US-Fmf, US-FPe, US-FR2, US-FR3, US-Fuf, US-Fwf, US-GLE, US-GMF, US-Goo, US-Ha1, US-Ha2, US-Hn2, US-Hn3, US-Ho1, US-Ho2, US-Ho3, US-IB1, US-IB2, US-Ivo, US-KFS, US-KLS, US-Kon, US-KS1, US-KS2, US-KUT, US-Lin, US-Los, US-LPH, US-LWW, US-Me1, US-Me2, US-Me3, US-Me4, US-Me5, US-Me6, US-MMS, US-MOz, US-Mpj, US-MRf, US-MtB, US-Myb, US-NC1, US-NC2, US-NC3, US-NC4, US-Ne1, US-Ne2, US-Ne3, US-NGB, US-NR1, US-Oho, US-ORv, US-PHM, US-Pon, US-Prr, US-RC1, US-RC2, US-RC3, US-RC4, US-RC5, US-Rls, US-Rms, US-Ro1, US-Ro2, US-Ro5, US-Ro6, US-Rpf, US-Rws, US-SdH, US-Seg, US-Ses, US-SFP, US-Shd, US-Skr, US-Slt, US-Snd, US-Sne, US-Snf, US-SO2, US-SO3, US-SO4, US-SP1, US-SP2, US-SP3, US-SRC, US-SRG, US-SRM, US-Srr, US-Sta, US-StJ, US-Syv, US-Ton, US-Tw1, US-Tw2, US-Tw3, US-Tw4, US-Tw5, US-Twt, US-Uaf, US-UMB, US-UMd, US-Var, US-Vcm, US-Vcp, US-Vcs, US-WBW, US-WCr, US-Wdn, US-Wgr, US-Whs, US-Wi0, US-Wi1, US-Wi3, US-Wi4, US-Wi5, US-Wi6, US-Wi7, US-Wi8, US-Wi9, US-Wjs, US-Wkg, US-Wlr, US-Wpp, US-WPT, US-Wrc, US-xBR, US-xCP, US-xDL, US-xHA, US-xKA, US-xKZ, US-xRM, US-xSR, US-xWD
Sullivan, R. C., Cook, D. R., Ghate, V. P., Kotamarthi, V. R., Feng, Y.
Evapotranspiration (ET) is a key component of the atmospheric and terrestrial water and energy budgets. Satellite‐based vegetation index approaches have used remotely sensed vegetation and reanalysis meteorological properties with surface energy balance models to estimate global ET (MOD16 ET). We reconstructed satellite retrievals …
Journal: Journal Of Geophysical Research: Biogeosciences, Volume 124 (2): 342-352 (2019). DOI: 10.1029/2018JG004744 Sites: US-AR1, US-AR2, US-ARM, US-Blo, US-Cop, US-GLE, US-Ha1, US-Los, US-Me2, US-Me6, US-MMS, US-Myb, US-Ne1, US-Ne2, US-Ne3, US-NR1, US-ORv, US-PFa, US-SRG, US-SRM, US-Syv, US-Ton, US-Tw1, US-Tw2, US-Tw3, US-Tw4, US-Twt, US-UMB, US-UMd, US-Var, US-WCr, US-Whs, US-Wkg
Sullivan, R. C., Kotamarthi, V. R., Feng, Y.
Future projections of evapotranspiration (ET) are of critical importance for agricultural and freshwater management and for predicting land–atmosphere feedbacks on the climate system. However, ET from phase 5 of the Coupled Model Intercomparison Project (CMIP5) simulations exhibits substantial biases, bolstering little confidence …
Journal: Journal Of Hydrometeorology, Volume 20 (8): 1619-1633 (2019). DOI: 10.1175/JHM-D-18-0259.1 Sites: US-AR1, US-AR2, US-ARM, US-Blo, US-Cop, US-GLE, US-Ha1, US-Los, US-Me2, US-Me6, US-MMS, US-Myb, US-Ne1, US-Ne2, US-Ne3, US-NR1, US-ORv, US-PFa, US-SRG, US-SRM, US-Syv, US-Ton, US-Tw1, US-Tw2, US-Tw3, US-Tw4, US-Twt, US-UMB, US-UMd, US-Var, US-WCr, US-Whs, US-Wkg
Morin, T.H., Bohrer, G., Stefanik, K.C., Rey-Sanchez, A.C., Matheny, A.M., Mitsch, W.J.
Methane (CH4) emissions and carbon uptake in temperate freshwater wetlands act in opposing directions
in the context of global radiative forcing. Large uncertainties exist for the rates of CH4 emissions making
it difficult to determine the extent that CH4 emissions counteract the carbon sequestration of wetlands.
Urban temperate …
Journal: Agricultural and Forest Meteorology, Volume : (2017). DOI: Sites: US-ORv
Morin, T.H. Bohrer, G. Frasson, R.P.dM. Naor-Azrieli, L. Mesi, S. Stefanik, K.C. Schäfer, K.V.R.
Methane (CH4) emissions were measured at the Wilma H. Schiermeier Olentangy River Wetland Research Park (ORWRP) over three summers and two winters using an eddy covariance system. We used an empirical model to determine the main environmental drivers of methane emissions. Methane emissions covary strongly with water vapor fluxes, …
Journal: Journal of Geophysical Research-Biogeosciences, Volume 119: 2188-2208 (2014). DOI: 10.1002/2014JG002750 Sites: US-ORv
Morin, T.H. Bohrer, G. Naor-Azrieli, L. Mesi, S. Kenny, W.T. Mitsch, W.J. Schäfer, K.V.R.
Wetlands provide important ecosystem services and store carbon dioxide but are also an important global source of methane – a potent greenhouse gas. In order to understand the dynamics of methane emissions from a temperate reconstructed wetland, methane fluxes were measured continuously over 2 years using the eddy covariance method …
Journal: Ecological Engineering, Volume 72: 74-83 (2014). DOI: 10.1016/j.ecoleng.2014.02.002 Sites: US-ORv
Brooker, M. R., Bohrer, G., Mouser, P. J.
Journal: Ecological Engineering, Volume 72: 84-94 (2014). DOI: 10.1016/j.ecoleng.2014.05.028 Sites: US-ORv
Mitsch, W. J., Zhang, L., Stefanik, K. C., Nahlik, A. M., Anderson, C. J., Bernal, B., Hernandez, M., Song, K.
Journal: Bioscience, Volume 62 (3): 237-250 (2012). DOI: 10.1525/bio.2012.62.3.5 Sites: US-ORv