Publications

Filters: Sites: US-Ha1
Clear Filters
Publications Found: 60

Scaling Individual Tree Transpiration With Thermal Cameras Reveals Interspecies Differences To Drought Vulnerability
Javadian, M., Aubrecht, D. M., Fisher, J. B., Scott, R. L., Burns, S. P., Diehl, J. L., Munger, J. W., Richardson, A. D.

Understanding tree transpiration variability is vital for assessing ecosystem water-use efficiency and forest health amid climate change, yet most landscape-level measurements do not differentiate individual trees. Using canopy temperature data from thermal cameras, we estimated the transpiration rates of individual trees at Harvard …


Journal: Geophysical Research Letters, Volume 51 (20): (2024), ISBN . DOI: https://doi.org/10.1029/2024GL111479 Sites: US-Ha1, US-NR1

Remote Sensing Of Seasonal Variation Of Lai And Fapar In A Deciduous Broadleaf Forest
Lee, L. X., Whitby, T. G., Munger, J. W., Stonebrook, S. J., Friedl, M. A.

Climate change is affecting the phenology of terrestrial ecosystems. In deciduous forests, phenology in leaf area index (LAI) is the primary driver of seasonal variation in the fraction of absorbed photosynthetically active radiation (fAPAR), which drives photosynthesis. Remote sensing has been widely used to estimate LAI and fAPAR. …


Journal: Agricultural And Forest Meteorology, Volume 333: 109389 (2023), ISBN . DOI: 10.1016/j.agrformet.2023.109389 Sites: US-Ha1, US-Ha2

Remote Sensing Of Seasonal Variation Of Lai And Fapar In A Deciduous Broadleaf Forest
Lee, L. X., Whitby, T. G., Munger, J. W., Stonebrook, S. J., Friedl, M. A.

Climate change is affecting the phenology of terrestrial ecosystems. In deciduous forests, phenology in leaf area index (LAI) is the primary driver of seasonal variation in the fraction of absorbed photosynthetically active radiation (fAPAR), which drives photosynthesis. Remote sensing has been widely used to estimate LAI and fAPAR. …


Journal: Agricultural And Forest Meteorology, Volume 333: 109389 (2023), ISBN . DOI: 10.1016/j.agrformet.2023.109389 Sites: US-Ha1

Coupling Of Tree Growth And Photosynthetic Carbon Uptake Across Six North American Forests
Teets, A., Moore, D. J., Alexander, M. R., Blanken, P. D., Bohrer, G., Burns, S. P., Carbone, M. S., Ducey, M. J., Fraver, S., Gough, C. M., Hollinger, D. Y., Koch, G., Kolb, T., Munger, J. W., Novick, K. A., Ollinger, S. V., Ouimette, A. P., Pederson, N., Ricciuto, D. M., Seyednasrollah, B., Vogel, C. S., Richardson, A. D.

Linking biometric measurements of stand-level biomass growth to tower-based measurements of carbon uptake—gross primary productivity and net ecosystem productivity—has been the focus of numerous ecosystem-level studies aimed to better understand the factors regulating carbon allocation to slow-turnover wood biomass pools. However, …


Journal: Journal Of Geophysical Research: Biogeosciences, Volume 127 (4): (2022), ISBN . DOI: 10.1029/2021JG006690 Sites: US-Bar, US-Ha1, US-Ho1, US-MMS, US-NR1, US-UMB

Representativeness Of Eddy-Covariance Flux Footprints For Areas Surrounding Ameriflux Sites
Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn, M. S., Metzger, S., Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi, D., Bernacchi, C., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Bracho, R., Brown, S., Brunsell, N. A., Chen, J., Chen, X., Clark, K., Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A., Gough, C. M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., Ikawa, H., Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H., Kobayashi, H., Kolb, T., Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick, K., Oberbauer, S. F., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E., Prajapati, P., Prueger, J., Quinton, W. L., Richardson, A. D., Russell, E. S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C., Stuart-Haëntjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A., Ueyama, M., Vargas, R., Wood, J. D., Zona, D.

Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements …


Journal: Agricultural And Forest Meteorology, Volume 301-302: 108350 (2021), ISBN . DOI: 10.1016/j.agrformet.2021.108350 Sites: CA-ARB, CA-ARF, CA-Ca1, CA-Ca2, CA-Ca3, CA-Cbo, CA-DBB, CA-ER1, CA-Gro, CA-Let, CA-Man, CA-MR3, CA-MR5, CA-Na1, CA-NS1, CA-NS2, CA-NS3, CA-NS4, CA-NS5, CA-NS6, CA-NS7, CA-Oas, CA-Obs, CA-Ojp, CA-Qc2, CA-Qcu, CA-Qfo, CA-SCC, CA-SF1, CA-SF2, CA-SF3, CA-SJ2, CA-SJ3, CA-TP1, CA-TP3, CA-TP4, CA-TPD, CA-WP1, US-A03, US-A10, US-A32, US-A74, US-ADR, US-AR1, US-AR2, US-ARb, US-ARc, US-ARM, US-Aud, US-Bar, US-Bi1, US-Bi2, US-Bkg, US-Blk, US-Blo, US-Bn1, US-Bn2, US-Bn3, US-Bo1, US-Bo2, US-Br3, US-CaV, US-Ced, US-CF1, US-CF2, US-CF3, US-CF4, US-ChR, US-Cop, US-CPk, US-CRT, US-Ctn, US-Dia, US-Dix, US-Dk1, US-Dk2, US-Dk3, US-EDN, US-Elm, US-EML, US-Fmf, US-FPe, US-FR2, US-FR3, US-Fuf, US-Fwf, US-GLE, US-GMF, US-Goo, US-Ha1, US-Ha2, US-Hn2, US-Hn3, US-Ho1, US-Ho2, US-Ho3, US-IB1, US-IB2, US-Ivo, US-KFS, US-KLS, US-Kon, US-KS1, US-KS2, US-KUT, US-Lin, US-Los, US-LPH, US-LWW, US-Me1, US-Me2, US-Me3, US-Me4, US-Me5, US-Me6, US-MMS, US-MOz, US-Mpj, US-MRf, US-MtB, US-Myb, US-NC1, US-NC2, US-NC3, US-NC4, US-Ne1, US-Ne2, US-Ne3, US-NGB, US-NR1, US-Oho, US-ORv, US-PHM, US-Pon, US-Prr, US-RC1, US-RC2, US-RC3, US-RC4, US-RC5, US-Rls, US-Rms, US-Ro1, US-Ro2, US-Ro5, US-Ro6, US-Rpf, US-Rws, US-SdH, US-Seg, US-Ses, US-SFP, US-Shd, US-Skr, US-Slt, US-Snd, US-Sne, US-Snf, US-SO2, US-SO3, US-SO4, US-SP1, US-SP2, US-SP3, US-SRC, US-SRG, US-SRM, US-Srr, US-Sta, US-StJ, US-Syv, US-Ton, US-Tw1, US-Tw2, US-Tw3, US-Tw4, US-Tw5, US-Twt, US-Uaf, US-UMB, US-UMd, US-Var, US-Vcm, US-Vcp, US-Vcs, US-WBW, US-WCr, US-Wdn, US-Wgr, US-Whs, US-Wi0, US-Wi1, US-Wi3, US-Wi4, US-Wi5, US-Wi6, US-Wi7, US-Wi8, US-Wi9, US-Wjs, US-Wkg, US-Wlr, US-Wpp, US-WPT, US-Wrc, US-xBR, US-xCP, US-xDL, US-xHA, US-xKA, US-xKZ, US-xRM, US-xSR, US-xWD

Seasonal Variability Of Forest Sensitivity To Heat And Drought Stresses: A Synthesis Based On Carbon Fluxes From North American Forest Ecosystems
Xu, B., Arain, M. A., Black, T. A., Law, B. E., Pastorello, G. Z., Chu, H.

Climate extremes such as heat waves and droughts are projected to occur more Frequently with increasing temperature and an intensified hydrological cycle. It is Important to understand and quantify how forest carbon fluxes respond to heat and drought stress. In this study, we developed a series of daily indices of sensitivity to …


Journal: Global Change Biology, Volume 26 (2): 901-918 (2020), ISBN . DOI: 10.1111/gcb.14843 Sites: CA-Ca1, CA-Ca2, CA-Ca3, CA-Gro, CA-Man, CA-NS1, CA-NS2, CA-NS3, CA-NS4, CA-NS5, CA-Oas, CA-Obs, CA-Qfo, CA-SF2, CA-TP1, CA-TP2, CA-TP3, CA-TP4, US-Bar, US-Blo, US-GLE, US-Ha1, US-Ho1, US-Me2, US-Me3, US-Me6, US-MMS, US-NR1, US-Oho, US-PFa, US-Prr, US-Syv, US-UMB, US-UMd, US-WCr

Carbon Budget Of The Harvard Forest Long‐Term Ecological Research Site: Pattern, Process, And Response To Global Change
Finzi, A. C., Giasson, M., Barker Plotkin, A. A., Aber, J. D., Boose, E. R., Davidson, E. A., Dietze, M. C., Ellison, A. M., Frey, S. D., Goldman, E., Keenan, T. F., Melillo, J. M., Munger, J. W., Nadelhoffer, K. J., Ollinger, S. V., Orwig, D. A., Pederson, N., Richardson, A. D., Savage, K., Tang, J., Thompson, J. R., Williams, C. A., Wofsy, S. C., Zhou, Z., Foster, D. R.

How, where, and why carbon (C) moves into and out of an ecosystem through time are long-standing questions in biogeochemistry. Here, we bring together hundreds of thousands of C-cycle observations at the Harvard Forest in central Massachusetts, USA, a mid-latitude landscape dominated by 80–120-year-old closed-canopy forests. These …


Journal: Ecological Monographs, Volume : (2020), ISBN . DOI: 10.1002/ecm.1423 Sites: US-Ha1, US-Ha2

Atmospheric Measurements Of The Terrestrial O2 : Co2 Exchange Ratio Of A Midlatitude Forest
Battle, M. O., Munger, J. W., Conley, M., Sofen, E., Perry, R., Hart, R., Davis, Z., Scheckman, J., Woogerd, J., Graeter, K., Seekins, S., David, S., Carpenter, J.


Journal: Atmospheric Chemistry And Physics, Volume 19 (13): 8687-8701 (2019), ISBN . DOI: 10.5194/acp-19-8687-2019 Sites: US-Ha1

Improved Spatiotemporal Representativeness And Bias Reduction Of Satellite-Based Evapotranspiration Retrievals Via Use Of In Situ Meteorology And Constrained Canopy Surface Resistance
Sullivan, R. C., Cook, D. R., Ghate, V. P., Kotamarthi, V. R., Feng, Y.

Evapotranspiration (ET) is a key component of the atmospheric and terrestrial water and energy budgets. Satellite‐based vegetation index approaches have used remotely sensed vegetation and reanalysis meteorological properties with surface energy balance models to estimate global ET (MOD16 ET). We reconstructed satellite retrievals …


Journal: Journal Of Geophysical Research: Biogeosciences, Volume 124 (2): 342-352 (2019), ISBN . DOI: 10.1029/2018JG004744 Sites: US-AR1, US-AR2, US-ARM, US-Blo, US-Cop, US-GLE, US-Ha1, US-Los, US-Me2, US-Me6, US-MMS, US-Myb, US-Ne1, US-Ne2, US-Ne3, US-NR1, US-ORv, US-PFa, US-SRG, US-SRM, US-Syv, US-Ton, US-Tw1, US-Tw2, US-Tw3, US-Tw4, US-Twt, US-UMB, US-UMd, US-Var, US-WCr, US-Whs, US-Wkg

Recovering Evapotranspiration Trends From Biased CMIP5 Simulations And Sensitivity To Changing Climate Over North America
Sullivan, R. C., Kotamarthi, V. R., Feng, Y.

Future projections of evapotranspiration (ET) are of critical importance for agricultural and freshwater management and for predicting land–atmosphere feedbacks on the climate system. However, ET from phase 5 of the Coupled Model Intercomparison Project (CMIP5) simulations exhibits substantial biases, bolstering little confidence …


Journal: Journal Of Hydrometeorology, Volume 20 (8): 1619-1633 (2019), ISBN . DOI: 10.1175/JHM-D-18-0259.1 Sites: US-AR1, US-AR2, US-ARM, US-Blo, US-Cop, US-GLE, US-Ha1, US-Los, US-Me2, US-Me6, US-MMS, US-Myb, US-Ne1, US-Ne2, US-Ne3, US-NR1, US-ORv, US-PFa, US-SRG, US-SRM, US-Syv, US-Ton, US-Tw1, US-Tw2, US-Tw3, US-Tw4, US-Twt, US-UMB, US-UMd, US-Var, US-WCr, US-Whs, US-Wkg