US-UMd: UMBS Disturbance
- Overview
- Windroses
- Data Citation
- Data Use Log
- Image Gallery
- Remote Sensing Data
- MODIS
- PhenoCam
- GeoNEX
- Publications
- BADM
Tower_team: | |
PI: | Aimee Classen aclassen@umich.edu - University of Michigan |
PI: | Christopher Gough cmgough@vcu.edu - Virginia Commonwealth University |
PI: | Gil Bohrer bohrer.17@osu.edu - Ohio State University |
DataManager: | John Lenters jlenters@umich.edu - University of Michigan |
Lat, Long: | 45.5625, -84.6975 |
Elevation(m): | 239 |
Network Affiliations: | AmeriFlux, Phenocam |
Vegetation IGBP: | DBF (Deciduous Broadleaf Forests: Lands dominated by woody vegetation with a percent cover >60% and height exceeding 2 meters. Consists of broadleaf tree communities with an annual cycle of leaf-on and leaf-off periods.) |
Climate Koeppen: | Dfb (Warm Summer Continental: significant precipitation in all seasons ) |
Mean Annual Temp (°C): | 5.83 |
Mean Annual Precip. (mm): | 803 |
Flux Species Measured: | H, H2O, CO2 |
Years Data Collected: | 2007 - Present |
Years Data Available: | AmeriFlux BASE 2007 - 2024 Data Citation AmeriFlux FLUXNET 2007 - 2023 Data Citation |
Data Use Policy: | AmeriFlux CC-BY-4.0 Policy1 |
Description: | The UMBS Disturbance site is an artificial disturbance site that has recently been created as part of the Forest Accelerate Succession ExperimenT (FASET). ... The UMBS Disturbance site is an artificial disturbance site that has recently been created as part of the Forest Accelerate Succession ExperimenT (FASET). In Spring 2008, every aspen and birch tree (>6,700, ~35% canopy LAI), the dominant early successional trees, were girdled over 39 ha of the FASET treatment plot to stimulate a disturbance that will move the forest into a later successional stage, dominated by maples, oaks, and white pine. This treatment caused aspen and birch mortality within 2 - 3 years. As a result of the changed canopy structure, there is a divergence in net ecosystem exchange between the control plot (enhanced carbon uptake) and the treatment plot (reduced carbon uptake). See MoreShow Less |
URL: | http://flux.org.ohio-state.edu/ |
Research Topics: | The research objectives of the University of Michigan Biological Station are to address questions of ecosystem/atmosphere linkages that are general in ... The research objectives of the University of Michigan Biological Station are to address questions of ecosystem/atmosphere linkages that are general in nature and which will contribute to large-scale carbon cycle modeling efforts, and to test hypotheses specific to the upper Great Lakes forest ecosystems that will further understanding of productivity controls over these regionally important communities. The research focus at the UMBS Disturbance site is to examine carbon cycling processes following the transition from aspen dominated ecosystems to those of later-successional species with biologically and structurally more complex canopies. See MoreShow Less |
Acknowledgment: | — |
- This site’s data can also be used under the more restrictive AmeriFlux Legacy Policy.
The AmeriFlux Legacy Policy must be followed if this site’s data are combined with data from sites that require the AmeriFlux Legacy Policy.




Copyright preference: Open use
US-UMd: UMBS Disturbance
- Overview
- Windroses
- Data Citation
- Data Use Log
- Image Gallery
- Remote Sensing Data
- MODIS
- PhenoCam
- GeoNEX
- Publications
- BADM
Use the information below for citation of this site. See the Data Policy page for more details.
DOI(s) for citing US-UMd data
Data Use Policy: AmeriFlux CC-BY-4.0 License
This site’s data can also be used under the more restrictive AmeriFlux Legacy Policy.
The AmeriFlux Legacy Policy must be followed if US-UMd data are combined with data from sites that require the AmeriFlux Legacy Policy.
- AmeriFlux BASE: https://doi.org/10.17190/AMF/1246134
Citation: Christopher Gough, Gil Bohrer, Peter Curtis (2025), AmeriFlux BASE US-UMd UMBS Disturbance, Ver. 16-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246134 - AmeriFlux FLUXNET: https://doi.org/10.17190/AMF/1881597
Citation: Christopher Gough, Gil Bohrer, Peter Curtis (2024), AmeriFlux FLUXNET-1F US-UMd UMBS Disturbance, Ver. 4-6, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1881597
Find global FLUXNET datasets, like FLUXNET2015 and FLUXNET-CH4, and their citation information at fluxnet.org.
To cite BADM when downloaded on their own, use the publications below for citing site characterization. When using BADM that are downloaded with AmeriFlux BASE and AmeriFlux FLUXNET products, use the DOI citation for the associated data product.
Publication(s) for citing site characterization
- —
Acknowledgments
- —
Resources
- AmeriFlux Logos & Acknowledgments
US-UMd: UMBS Disturbance
- Overview
- Windroses
- Data Citation
- Data Use Log
- Image Gallery
- Remote Sensing Data
- MODIS
- PhenoCam
- GeoNEX
- Publications
- BADM

This page displays the list of downloads of data for the site US-UMd.
Note: Results are the number of downloads to distinct data users. The Download Count column indicates the number of times the data user downloaded the data. The Version column refers to the version of the data product for the site that was downloaded by the data user.
Date | Name | Data Product | Version | Intended Use | Intended Use Description | Download Count |
---|
Date | Name | Data Product | Vers. | Intended Use | Intended Use Description | Download Count |
---|---|---|---|---|---|---|
Showing 0 to 0 of 0 results
Not Found
Uh Oh. Something is missing. Try double checking the URL and try again.
US-UMd: UMBS Disturbance
- Overview
- Windroses
- Data Citation
- Data Use Log
- Image Gallery
- Remote Sensing Data
- MODIS
- PhenoCam
- GeoNEX
- Publications
- BADM
AmeriFlux Images | Add Image |

Dead aspen in the US-UMd forest
Keywords: —
Location: Michigan, United States
View in Original Size
To download, right-click photo (Mac: control-click) and choose Save Image As

researchers in UMb canopy
Keywords: —
Location: Michigan, United States
View in Original Size
To download, right-click photo (Mac: control-click) and choose Save Image As

Girdled tree in US-UMd tower footprint
Keywords: —
Location: Michigan, United States
View in Original Size
To download, right-click photo (Mac: control-click) and choose Save Image As

US-UMd FASET aerial view following aspen and birch senescence
Keywords: —
Location: Michigan, United States
View in Original Size
To download, right-click photo (Mac: control-click) and choose Save Image As
US-UMd: UMBS Disturbance
- Overview
- Windroses
- Data Citation
- Data Use Log
- Image Gallery
- Remote Sensing Data
- MODIS
- PhenoCam
- GeoNEX
- Publications
- BADM
MODIS NDVI
The time series shows the 16-day Normalized Difference Vegetation Index (NDVI) average from the MOD13Q1 data product.
Use the slider below the time series to zoom in and out.
To view / download these data and other MOD13Q1 products for this site, visit MODIS/Terra Vegetation Indices.
For other related products, visit MODIS/VIIRS Fixed Sites Subsets Tool.
Citation:
ORNL DAAC. 2018. Terrestrial Ecology Subsetting & Visualization Services (TESViS) Fixed Sites Subsets. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1567
MODIS NDVI subsetted data is not yet available for this site.
For a complete list of AmeriFlux sites, visit ORNL DAAC's MODIS/VIIRS Fixed Sites Subsets Tool.
PhenoCam Images and Derived Time Series Data
PhenoCams are high-resolution digital cameras that take repeated images of studied ecosystems and provide quantitative information about the canopy phenology. The PhenoCam Network coordinates the camera installation and data reporting/analyses across sites in the Americas, providing automated, near-surface remote sensing of canopy phenology across a range of ecosystems and climate zones. Use of PhenoCam images / data should follow the PhenoCam Data Use Policy .
PhenoCam sites for US-UMd:
Use the links below to explore camera images and interactive timeseries for these sites.
Citation:
B. Seyednasrollah, A. M. Young, K. Hufkens, T. Milliman, M. A. Friedl, S. Frolking, and A. D. Richardson. Tracking vegetation phenology across diverse biomes using version 2.0 of the phenocam dataset. Scientific Data, 6(1):222, 2019. doi:10.1038/s41597-019-0229-9Camera Imagery
Milliman, T., B. Seyednasrollah, A.M. Young, K. Hufkens, M.A. Friedl, S. Frolking, A.D. Richardson, M. Abraha, D.W. Allen, M. Apple, M.A. Arain, J.M. Baker, D. Baldocchi, C.J. Bernacchi, J. Bhattacharjee, P. Blanken, D.D. Bosch, R. Boughton, E.H. Boughton, R.F. Brown, D.M. Browning, N. Brunsell, S.P. Burns, M. Cavagna, H. Chu, P.E. Clark, B.J. Conrad, E. Cremonese, D. Debinski, A.R. Desai, R. Diaz-Delgado, L. Duchesne, A.L. Dunn, D.M. Eissenstat, T. El-Madany, D.S.S. Ellum, S.M. Ernest, A. Esposito, L. Fenstermaker, L.B. Flanagan, B. Forsythe, J. Gallagher, D. Gianelle, T. Griffis, P. Groffman, L. Gu, J. Guillemot, M. Halpin, P.J. Hanson, D. Hemming, A.A. Hove, E.R. Humphreys, A. Jaimes-Hernandez, A.A. Jaradat, J. Johnson, E. Keel, V.R. Kelly, J.W. Kirchner, P.B. Kirchner, M. Knapp, M. Krassovski, O. Langvall, G. Lanthier, G.l. Maire, E. Magliulo, T.A. Martin, B. McNeil, G.A. Meyer, M. Migliavacca, B.P. Mohanty, C.E. Moore, R. Mudd, J.W. Munger, Z.E. Murrell, Z. Nesic, H.S. Neufeld, W. Oechel, A.C. Oishi, W.W. Oswald, T.D. Perkins, M.L. Reba, B. Rundquist, B.R. Runkle, E.S. Russell, E.J. Sadler, A. Saha, N.Z. Saliendra, L. Schmalbeck, M.D. Schwartz, R.L. Scott, E.M. Smith, O. Sonnentag, P. Stoy, S. Strachan, K. Suvocarev, J.E. Thom, R.Q. Thomas, A.K. Van den berg, R. Vargas, J. Verfaillie, C.S. Vogel, J.J. Walker, N. Webb, P. Wetzel, S. Weyers, A.V. Whipple, T.G. Whitham, G. Wohlfahrt, J.D. Wood, J. Yang, X. Yang, G. Yenni, Y. Zhang, Q. Zhang, and D. Zona. 2019. PhenoCam Dataset v2.0: Digital Camera Imagery from the PhenoCam Network, 2000-2018. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1689
Green Chromatic Coordinate Time Series
Seyednasrollah, B., A.M. Young, K. Hufkens, T. Milliman, M.A. Friedl, S. Frolking, A.D. Richardson, M. Abraha, D.W. Allen, M. Apple, M.A. Arain, J. Baker, J.M. Baker, D. Baldocchi, C.J. Bernacchi, J. Bhattacharjee, P. Blanken, D.D. Bosch, R. Boughton, E.H. Boughton, R.F. Brown, D.M. Browning, N. Brunsell, S.P. Burns, M. Cavagna, H. Chu, P.E. Clark, B.J. Conrad, E. Cremonese, D. Debinski, A.R. Desai, R. Diaz-Delgado, L. Duchesne, A.L. Dunn, D.M. Eissenstat, T. El-Madany, D.S.S. Ellum, S.M. Ernest, A. Esposito, L. Fenstermaker, L.B. Flanagan, B. Forsythe, J. Gallagher, D. Gianelle, T. Griffis, P. Groffman, L. Gu, J. Guillemot, M. Halpin, P.J. Hanson, D. Hemming, A.A. Hove, E.R. Humphreys, A. Jaimes-Hernandez, A.A. Jaradat, J. Johnson, E. Keel, V.R. Kelly, J.W. Kirchner, P.B. Kirchner, M. Knapp, M. Krassovski, O. Langvall, G. Lanthier, G.l. Maire, E. Magliulo, T.A. Martin, B. McNeil, G.A. Meyer, M. Migliavacca, B.P. Mohanty, C.E. Moore, R. Mudd, J.W. Munger, Z.E. Murrell, Z. Nesic, H.S. Neufeld, T.L. O'Halloran, W. Oechel, A.C. Oishi, W.W. Oswald, T.D. Perkins, M.L. Reba, B. Rundquist, B.R. Runkle, E.S. Russell, E.J. Sadler, A. Saha, N.Z. Saliendra, L. Schmalbeck, M.D. Schwartz, R.L. Scott, E.M. Smith, O. Sonnentag, P. Stoy, S. Strachan, K. Suvocarev, J.E. Thom, R.Q. Thomas, A.K. Van den berg, R. Vargas, J. Verfaillie, C.S. Vogel, J.J. Walker, N. Webb, P. Wetzel, S. Weyers, A.V. Whipple, T.G. Whitham, G. Wohlfahrt, J.D. Wood, S. Wolf, J. Yang, X. Yang, G. Yenni, Y. Zhang, Q. Zhang, and D. Zona. 2019. PhenoCam Dataset v2.0: Vegetation Phenology from Digital Camera Imagery, 2000-2018. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1674
GeoNEX Data Products
GeoNEX led by NASA Earth eXchange (NEX) is a collaborative effort for generating Earth monitoring products from the new generation of geostationary satellite sensors. GeoNEX has produced a suite of geostationary data products including surface reflectance, land surface temperature, surface solar radiation, and many others.
The GeoNEX Common Grid locates GeoNEX data in the geographic (latitude/longitude) projection. Pixels (grid cells) are created at regular 0.005°, 0.01°, and 0.02° resolutions.
GeoNEX pixels below cover the area 0.06° x 0.06° around and including site US-UMd, 45.5625, -84.6975.
Click a square in the grid at left to display its data below.
Coordinates for selected GeoNEX Pixel
Graph controls:
- Zoom: click-drag
- Pan: shift-click-drag
- Restore zoom level: double-click
- Use the slider below the time series to zoom in and out.
All download requests will be logged.
NDVI: Normalized Difference Vegetation Index
Resolution: 0.01° x 0.01° & 10 minutes
Coordinates for pixel:
NIRv Near-Infrared Reflectance of vegetation
Resolution: 0.01° x 0.01° & 10 minutes
Coordinates for pixel:
DSR: Surface downward shortwave radiation
Resolution: 0.01° x 0.01° & Hourly
Coordinates for pixel:
LST: Land Surface Temperature
Resolution: 0.02° x 0.02° & Hourly
Coordinates for pixel:
Citation
This material can be used without obtaining permission from NASA. NASA should be acknowledged as the source of this material.
Subset Data Citation:
- Hashimoto, H., Wang, W., Park, T., Khajehei, S., Ichii, K., Michaelis, A.R., Guzman, A., Nemani, R.R., Torn, M., Yi, K., Brosnan, I.G. (in preparation). Subsets of geostationary satellite data over international observing network sites for studying the diurnal dynamics of energy, carbon, and water cycles.
Relevant Science Publication Citation:
GeoNEX Surface Reflectance for Vegetation Indices (NDVI & NIRv)- Wang, W., Wang, Y., Lyapustin, A., Hashimoto, H., Park, T., Michaelis, A., & Nemani, R. (2022). A novel atmospheric correction algorithm to exploit the diurnal variability in hypertemporal geostationary observations. Remote Sensing, 14(4), 964.
- Li, R., Wang, D., Wang, W., & Nemani, R. (2023). A GeoNEX-based high-spatiotemporal-resolution product of land surface downward shortwave radiation and photosynthetically active radiation. Earth System Science Data, 15(3), 1419-1436.
- Jia, A., Liang, S., & Wang, D. (2022). Generating a 2-km, all-sky, hourly land surface temperature product from Advanced Baseline Imager data. Remote Sensing of Environment, 278, 113105.
US-UMd: UMBS Disturbance
- Overview
- Windroses
- Data Citation
- Data Use Log
- Image Gallery
- Remote Sensing Data
- MODIS
- PhenoCam
- GeoNEX
- Publications
- BADM
AmeriFlux Publications | Add Publication |
Year | Publication |
---|---|
2025 | Nave, L. E., Gough, C. M., Clay, C., Santos, F., Atkins, J. W., Benjamins‐Carey, S. E., Bohrer, G., Castillo, B. T., Fahey, R. T., Hardiman, B. S., Hofmeister, K. L., Ivanov, V. Y., Kalejs, J., Matheny, A. M., Menna, A. C., Nadelhoffer, K. J., Propson, B. E., Schubel, A. T., Tallant, J. M. (2025) Carbon Cycling Across Ecosystem Succession In A North Temperate Forest: Controls And Management Implications, Ecological Applications, 35(1), . https://doi.org/10.1002/eap.70001 |
2021 | Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn, M. S., Metzger, S., Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi, D., Bernacchi, C., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Bracho, R., Brown, S., Brunsell, N. A., Chen, J., Chen, X., Clark, K., Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A., Gough, C. M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., Ikawa, H., Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H., Kobayashi, H., Kolb, T., Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick, K., Oberbauer, S. F., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E., Prajapati, P., Prueger, J., Quinton, W. L., Richardson, A. D., Russell, E. S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C., Stuart-Haëntjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A., Ueyama, M., Vargas, R., Wood, J. D., Zona, D. (2021) Representativeness Of Eddy-Covariance Flux Footprints For Areas Surrounding Ameriflux Sites, Agricultural And Forest Meteorology, 301-302, 108350. https://doi.org/10.1016/j.agrformet.2021.108350 |
2020 | Xu, B., Arain, M. A., Black, T. A., Law, B. E., Pastorello, G. Z., Chu, H. (2020) Seasonal Variability Of Forest Sensitivity To Heat And Drought Stresses: A Synthesis Based On Carbon Fluxes From North American Forest Ecosystems, Global Change Biology, 26(2), 901-918. https://doi.org/10.1111/gcb.14843 |
2019 | Sullivan, R. C., Cook, D. R., Ghate, V. P., Kotamarthi, V. R., Feng, Y. (2019) Improved Spatiotemporal Representativeness And Bias Reduction Of Satellite-Based Evapotranspiration Retrievals Via Use Of In Situ Meteorology And Constrained Canopy Surface Resistance, Journal Of Geophysical Research: Biogeosciences, 124(2), 342-352. https://doi.org/10.1029/2018JG004744 |
2019 | Sullivan, R. C., Kotamarthi, V. R., Feng, Y. (2019) Recovering Evapotranspiration Trends From Biased CMIP5 Simulations And Sensitivity To Changing Climate Over North America, Journal Of Hydrometeorology, 20(8), 1619-1633. https://doi.org/10.1175/JHM-D-18-0259.1 |
2018 | Chu, H., Baldocchi, D. D., Poindexter, C., Abraha, M., Desai, A. R., Bohrer, G., Arain, M. A., Griffis, T., Blanken, P. D., O'Halloran, T. L., Thomas, R. Q., Zhang, Q., Burns, S. P., Frank, J. M., Christian, D., Brown, S., Black, T. A., Gough, C. M., Law, B. E., Lee, X., Chen, J., Reed, D. E., Massman, W. J., Clark, K., Hatfield, J., Prueger, J., Bracho, R., Baker, J. M., Martin, T. A. (2018) Temporal Dynamics Of Aerodynamic Canopy Height Derived From Eddy Covariance Momentum Flux Data Across North American Flux Networks, Geophysical Research Letters, 45, 9275–9287. https://doi.org/10.1029/2018GL079306 |
2018 | Atkins, J. W., Bohrer, G., Fahey, R. T., Hardiman, B. S., Morin, T. H., Stovall, A. E., Zimmerman, N., Gough, C. M. (2018) Quantifying Vegetation And Canopy Structural Complexity From Terrestrial Lidar Data Using The Forestr R Package, Methods In Ecology And Evolution, 9(10), 2057-2066. https://doi.org/10.1111/2041-210X.13061 |
2018 | Fotis, A. T., Morin, T. H., Fahey, R. T., Hardiman, B. S., Bohrer, G., Curtis, P. S. (2018) Forest Structure In Space And Time: Biotic And Abiotic Determinants Of Canopy Complexity And Their Effects On Net Primary Productivity, Agricultural And Forest Meteorology, 250-251, 181-191. https://doi.org/10.1016/j.agrformet.2017.12.251 |
2018 | Atkins, J. W., Fahey, R. T., Hardiman, B. H., Gough, C. M. (2018) Forest Canopy Structural Complexity And Light Absorption Relationships At The Subcontinental Scale, Journal Of Geophysical Research: Biogeosciences, 123(4), 1387-1405. https://doi.org/10.1002/2017JG004256 |
2018 | Bond-Lamberty, B., Bailey, V. L., Chen, M., Gough, C. M., Vargas, R. (2018) Globally Rising Soil Heterotrophic Respiration Over Recent Decades, Nature, 560(7716), 80-83. https://doi.org/10.1038/s41586-018-0358-x |
2018 | Curtis, P. S., Gough, C. M. (2018) Forest Aging, Disturbance And The Carbon Cycle, New Phytologist, 219(4), 1188-1193. https://doi.org/10.1111/nph.15227 |
2018 | Hardiman, B., LaRue, E., Atkins, J., Fahey, R., Wagner, F., Gough, C. (2018) Spatial Variation In Canopy Structure Across Forest Landscapes, Forests, 9(8), 474. https://doi.org/10.3390/f9080474 |
2018 | LaRue, E. A., Atkins, J. W., Dahlin, K., Fahey, R., Fei, S., Gough, C., Hardiman, B. S. (2018) Linking Landsat To Terrestrial Lidar: Vegetation Metrics Of Forest Greenness Are Correlated With Canopy Structural Complexity, International Journal Of Applied Earth Observation And Geoinformation, 73, 420-427. https://doi.org/10.1016/j.jag.2018.07.001 |
2018 | Sagara, B., Fahey, R., Vogel, C., Fotis, A., Curtis, P., Gough, C. (2018) Moderate Disturbance Has Similar Effects On Production Regardless Of Site Quality And Composition, Forests, 9(2), 70. https://doi.org/10.3390/f9020070 |
2018 | Stuart-Haëntjens, E., De Boeck, H. J., Lemoine, N. P., Mänd, P., Kröel-Dulay, G., Schmidt, I. K., Jentsch, A., Stampfli, A., Anderegg, W. R., Bahn, M., Kreyling, J., Wohlgemuth, T., Lloret, F., Classen, A. T., Gough, C. M., Smith, M. D. (2018) Mean Annual Precipitation Predicts Primary Production Resistance And Resilience To Extreme Drought, Science Of The Total Environment, 636, 360-366. https://doi.org/10.1016/j.scitotenv.2018.04.290 |
2017 | Matheny, A. M., Garrity, S. R., Bohrer, G. (2017) The Calibration And Use Of Capacitance Sensors To Monitor Stem Water Content In Trees, Journal Of Visualized Experiments, (130), . https://doi.org/10.3791/57062 |
2017 | Matheny, A. M., Mirfenderesgi, G., Bohrer, G. (2017) Trait-Based Representation Of Hydrological Functional Properties Of Plants In Weather And Ecosystem Models, Plant Diversity, 39(1), 1-12. https://doi.org/10.1016/j.pld.2016.10.001 |
2016 | Fahey, R. T., Stuart-Haëntjens, E. J., Gough, C. M., De La Cruz, A., Stockton, E., Vogel, C. S., Curtis, P. S. (2016) Evaluating Forest Subcanopy Response To Moderate Severity Disturbance And Contribution To Ecosystem-Level Productivity And Resilience, Forest Ecology And Management, 376, 135-147. https://doi.org/10.1016/j.foreco.2016.06.001 |
2016 | Gough, C. M., Curtis, P. S., Hardiman, B. S., Scheuermann, C. M., Bond‐Lamberty, B. (2016) Disturbance, Complexity, And Succession Of Net Ecosystem Production In North America’S Temperate Deciduous Forests, Ecosphere, 7(6), . https://doi.org/10.1002/ecs2.1375 |
2016 | Schmid, A. V., Vogel, C. S., Liebman, E., Curtis, P. S., Gough, C. M. (2016) Coarse Woody Debris And The Carbon Balance Of A Moderately Disturbed Forest, Forest Ecology And Management, 361, 38-45. https://doi.org/10.1016/j.foreco.2015.11.001 |
2015 | Toomey, M., Friedl, M. A., Frolking, S., Hufkens, K., Klosterman, S., Sonnentag, O., Baldocchi, D. D., Bernacchi, C. J., Biraud, S. C., Bohrer, G., Brzostek, E., Burns, S. P., Coursolle, C., Hollinger, D. Y., Margolis, H. A., McCaughey, H., Monson, R. K., Munger, J. W., Pallardy, S., Phillips, R. P., Torn, M. S., Wharton, S., Zeri, M., Richardson, A. D. (2015) Greenness Indices From Digital Cameras Predict The Timing And Seasonal Dynamics Of Canopy-Scale Photosynthesis, Ecological Applications, 25(1), 99-115. https://doi.org/http://doi.org/10.1890/14-0005.1 |
2015 | Frasson, R. P., Bohrer, G., Medvigy, D., Matheny, A. M., Morin, T. H., Vogel, C. S., Gough, C. M., Maurer, K. D., Curtis, P. S. (2015) Modeling Forest Carbon Cycle Response To Tree Mortality: Effects Of Plant Functional Type And Disturbance Intensity, Journal Of Geophysical Research: Biogeosciences, 120(11), 2178-2193. https://doi.org/10.1002/2015JG003035 |
2015 | Stuart-Haëntjens, E. J., Curtis, P. S., Fahey, R. T., Vogel, C. S., Gough, C. M. (2015) Net Primary Production Of A Temperate Deciduous Forest Exhibits A Threshold Response To Increasing Disturbance Severity, Ecology, 96(9), 2478-2487. https://doi.org/10.1890/14-1810.1 |
2014 | Nave, L. E., Sparks, J. P., Le Moine, J., Hardiman, B. S., Nadelhoffer, K. J., Tallant, J. M., Vogel, C. S., Strahm, B. D., Curtis, P. S. (2014) Changes In Soil Nitrogen Cycling In A Northern Temperate Forest Ecosystem During Succession, Biogeochemistry, 121(3), 471-488. https://doi.org/10.1007/s10533-014-0013-z |
2013 | Gough, C. M., Hardiman, B. S., Nave, L. E., Bohrer, G., Maurer, K. D., Vogel, C. S., Nadelhoffer, K. J., Curtis, P. S. (2013) Sustained Carbon Uptake And Storage Following Moderate Disturbance In A Great Lakes Forest, Ecological Applications, 23(5), 1202-1215. https://doi.org/10.1890/12-1554.1 |
2013 | Thomsen, J., Bohrer, G., Matheny, A., Ivanov, V., He, L., Renninger, H., Schäfer, K. (2013) Contrasting Hydraulic Strategies During Dry Soil Conditions In Quercus Rubra And Acer Rubrum In A Sandy Site In Michigan, Forests, 4(4), 1106-1120. https://doi.org/10.3390/f4041106 |
2013 | Detto, M., Bohrer, G., Nietz, J., Maurer, K., Vogel, C., Gough, C., Curtis, P. (2013) Multivariate Conditional Granger Causality Analysis For Lagged Response Of Soil Respiration In A Temperate Forest, Entropy, 15(12), 4266-4284. https://doi.org/10.3390/e15104266 |
2013 | Maurer, K. D., Hardiman, B. S., Vogel, C. S., Bohrer, G. (2013) Canopy-Structure Effects On Surface Roughness Parameters: Observations In A Great Lakes Mixed-Deciduous Forest, Agricultural And Forest Meteorology, 177, 24-34. https://doi.org/10.1016/j.agrformet.2013.04.002 |
2013 | Hardiman, B., Bohrer, G., Gough, C., Curtis, P. (2013) Canopy Structural Changes Following Widespread Mortality Of Canopy Dominant Trees, Forests, 4(3), 537-552. https://doi.org/10.3390/f4030537 |
2013 | Hardiman, B. S., Gough, C. M., Halperin, A., Hofmeister, K. L., Nave, L. E., Bohrer, G., Curtis, P. S. (2013) Maintaining High Rates Of Carbon Storage In Old Forests: A Mechanism Linking Canopy Structure To Forest Function, Forest Ecology And Management, 298, 111-119. https://doi.org/10.1016/j.foreco.2013.02.031 |
2011 | Nave, L.E., Gough, C.M., Maurer, K.D., Bohrer, G, Hardiman, B.S., Le Moine, J., Munoz, A.B., Nadelhoffer, K.J., Sparks, J.P., Strahm, B.D., Vogel, C.S., Curtis, P.S. (2011) Disturbance And The Resilience Of Coupled Carbon And Nitrogen Cycling In A North Temperate Forest, Journal Of Geophysical Research, 116(G04016), n/a-n/a. https://doi.org/10.1029/2011JG001758 |
2011 | Nave, L. E., Gough, C. M., Maurer, K. D., Bohrer, G., Hardiman, B. S., Le Moine, J., Munoz, A. B., Nadelhoffer, K. J., Sparks, J. P., Strahm, B. D., Vogel, C. S., Curtis, P. S. (2011) Disturbance And The Resilience Of Coupled Carbon And Nitrogen Cycling In A North Temperate Forest, Journal Of Geophysical Research, 116(G4), . https://doi.org/10.1029/2011JG001758 |
2011 | Hardiman, B. S., Bohrer, G., Gough, C. M., Vogel, C. S., Curtis, P. S. (2011) The Role Of Canopy Structural Complexity In Wood Net Primary Production Of A Maturing Northern Deciduous Forest, Ecology, 92(9), 1818-1827. https://doi.org/10.1890/10-2192.1 |
US-UMd: UMBS Disturbance
- Overview
- Windroses
- Data Citation
- Data Use Log
- Image Gallery
- Remote Sensing Data
- MODIS
- PhenoCam
- GeoNEX
- Publications
- BADM
BADM for This Site
Access the Biological, Ancillary, Disturbance and Metadata (BADM) information and data for this site.
BADM contain information for many uses, such as characterizing a site’s vegetation and soil, describing disturbance history, and defining instrumentation for flux processing. They complement the flux/met data.
- Download BADM for this site*
- View Site General Info for this site (Overview tab)*
- Use Online Editor to update Site General Info or DOI Authorship
- Update information about submitted data (Variable Information tool)
- More BADM resources
* Online updates are shown on the Overview tab real time. However, downloaded BADM files will not reflect those updates until they have been reviewed for QA/QC.
US-UMd: UMBS Disturbance
- Overview
- Windroses
- Data Citation
- Data Use Log
- Image Gallery
- Remote Sensing Data
- MODIS
- PhenoCam
- GeoNEX
- Publications
- BADM
Wind Roses
Wind Speed (m/s)
Navigation
- Wind Speed Scale: Per Site
- Wind Direction Scale (%): Per Site
- Wind Speed Scale: Non-Linear
- Wind Direction Scale (%): AmeriFlux