This Tech blog post describes two approaches that can help you collect high-quality data and minimize data gaps: automated data visualization for post-visit data QA/QC, and taking advantage of digital notes for field work and data processing.
There are few observational studies measuring the ecosystem‐scale productivity effects of changes in incident diffuse photosynthetically active radiation (PARdiffuse), especially related to wildfire smoke. Climate change‐induced increases to the duration and intensity of fire conditions have made smoke a common occurrence across western North America, with largely unquantified ecosystem feedbacks. Under equivalent amounts of radiation,… More
Over the past decades, the eddy covariance (EC) community has clearly demonstrated the power of networks; regional networks and FLUXNET have shown us that combining data across multiple sites creates a whole that is greater than the sum of its parts. The FLUXNET database has been used extensively to evaluate satellite measurements, inform Earth system… More
Future projections of evapotranspiration (ET) are of critical importance for agricultural and freshwater management and for predicting land–atmosphere feedbacks on the climate system. However, ET from phase 5 of the Coupled Model Intercomparison Project (CMIP5) simulations exhibits substantial biases, bolstering little confidence in future ET projections. Despite poor predictive skill and large bias of ET… More
From a dry vantage point on Twitchell Island, the deck of a cargo ship skims by, above a fragile levee that holds back the mighty San Joaquin River. A few centuries ago, standing in this same spot, we would have been covered in ten or twenty feet of peat, the residue from millennia of accumulating… More
Evapotranspiration (ET) is a key component of the atmospheric and terrestrial water and energy budgets. Satellite‐based vegetation index approaches have used remotely sensed vegetation and reanalysis meteorological properties with surface energy balance models to estimate global ET (MOD16 ET). We reconstructed satellite retrievals using in situ meteorology (Argonne‐ET) and evaluated them using a dense network… More
Restoring degraded peat soils presents an attractive, but largely untested, climate change mitigation approach. Drained peat soils used for agriculture can be large greenhouse gas sources. By restoring subsided peat soils to managed, impounded wetlands, significant agricultural emissions are avoided, and soil carbon can be sequestered and protected. Here, we synthesize 36 site-years of continuous… More
Peatland drainage is an important driver of global soil carbon loss and carbon dioxide (CO2) emissions. Restoration of peatlands by re‐flooding reverses CO2 losses at the cost of increased methane (CH4) emissions, presenting a biogeochemical compromise. While restoring peatlands is a potentially effective method for sequestering carbon, the terms of this compromise are not well… More
Land use change and management affect climate by altering both the biogeochemical and biophysical interactions between the land and atmosphere. Whereas climate policy often emphasizes the biogeochemical impact of land use change, biophysical impacts, including changes in reflectance, energy partitioning among sensible and latent heat exchange, and surface roughness, can attenuate or enhance biogeochemical effects… More
Water is a limited and valuable resource in California. A large proportion of the fresh water for southern California is supplied by the Sacramento and San Joaquin rivers. With recent efforts to restore large areas of land in the Sacramento–San Joaquin Delta region from farmland to managed wetlands, it is important to investigate the effect… More