Publications Found: 3
Long-Term Release Of Carbon Dioxide From Arctic Tundra Ecosystems In Alaska
Euskirchen, E. S., Bret-Harte, M. S., Shaver, G. R., Edgar, C. W., Romanovsky, V. E.

Releases of the greenhouse gases carbon dioxide (CO2) and methane (CH4) from thawing permafrost are expected to be among the largest feedbacks to climate from arctic ecosystems. However, the current net carbon (C) balance of terrestrial arctic ecosystems is unknown. Recent studies suggest that these ecosystems are sources, sinks, …

Journal: Ecosystems, Volume 20 (5): 960-974 (2017). DOI: Sites: US-ICh, US-ICs, US-ICt

Upscaling Of CO2 Fluxes From Heterogeneous Tundra Plant Communities In Arctic Alaska
Kade, A., Bret-Harte, M. S., Euskirchen, E. S., Edgar, C., Fulweber, R. A.

We characterized the tundra vegetation at three eddy covariance towers located along a toposequence in northern Alaska and studied seasonal variations in plot-level CO2 fluxes among the dominant vegetation types with chambers during the summer and with the gradient-diffusion technique during the winter. We performed footprint …

Journal: Journal Of Geophysical Research: Biogeosciences, Volume 117 (G4): n/a-n/a (2012). DOI: 10.1029/2012JG002065 Sites: US-ICh, US-ICs, US-ICt

Seasonal Patterns Of Carbon Dioxide And Water Fluxes In Three Representative Tundra Ecosystems In Northern Alaska
Euskirchen, E. S., Bret-Harte, M. S., Scott, G. J., Edgar, C., Shaver, G. R.

Understanding the carbon dioxide and water fluxes in the Arctic is essential for accurate assessment and prediction of the responses of these ecosystems to climate change. In the Arctic, there have been relatively few studies of net CO2, water, and energy exchange using micrometeorological methods due to the difficulty …

Journal: Ecosphere, Volume 3 (1): 1-19 (2012). DOI: 10.1890/ES11-00202.1 Sites: US-ICh, US-ICs, US-ICt