Restoring degraded peat soils presents an attractive, but largely untested, climate change mitigation approach. Drained peat soils used for agriculture can be large greenhouse gas sources. By restoring subsided peat soils to managed, impounded wetlands, significant agricultural emissions are avoided, and soil carbon can be sequestered and protected. Here, we synthesize 36 site-years of continuous… More
Reforesting and managing ecosystems have been proposed as ways to mitigate global warming and offset anthropogenic carbon emissions. The intent of our opinion piece is to provide a perspective on how well plants and ecosystems sequester carbon. The ability of individual plants and ecosystems to mine carbon dioxide from the atmosphere, as defined by rates… More
Aerodynamic canopy height (ha) is the effective height of vegetation canopy for its influence on atmospheric fluxes and is a key parameter of surface‐atmosphere coupling. However, methods to estimate ha from data are limited. This synthesis evaluates the applicability and robustness of the calculation of ha from eddy covariance momentum‐flux data. At 69 forest sites,… More
Water is a limited and valuable resource in California. A large proportion of the fresh water for southern California is supplied by the Sacramento and San Joaquin rivers. With recent efforts to restore large areas of land in the Sacramento–San Joaquin Delta region from farmland to managed wetlands, it is important to investigate the effect… More
Corrections accounting for air density fluctuations due to heat and water vapour fluxes must be applied to the measurement of eddy-covariance fluxes when using open-path sensors. Experimental tests and ecosystem observations have demonstrated the important role density corrections play in accurately quantifying carbon dioxide ( CO 2 ) fluxes, but less attention has been paid… More