Salt marshes constitute an important terrestrial-aquatic interface that remains underrepresented in Earth System Models due to constraining biophysical controls and spatially limited land cover. One promising approach to improve representativeness is the application of proximal remote sensing to generate phenological information, yet we lack detailed knowledge on how proximal sensors and indices perform within these… More

in    0

Salt marshes are large carbon reservoirs as part of blue carbon ecosystems. Unfortunately, there is limited information about the net ecosystem (NEE) and methane (CH4) exchange between salt marshes and the atmosphere to fully understand their carbon dynamics. We tested the influence of biophysical drivers by plant phenological phases (i.e., Greenup, Maturity, Senescence and Dormancy)… More

in    0

Coastal salt marshes store large amounts of carbon but the magnitude and patterns of greenhouse gas (GHG; i.e., carbon dioxide (CO2) and methane (CH4)) fluxes are unclear. Information about GHG fluxes from these ecosystems comes from studies of sediments or at the ecosystem‐scale (eddy covariance) but fluxes from tidal creeks are unknown. We measured GHG… More

in    0

Storm surges can substantially alter the water level and salinity in tidal salt marshes. Little is known about how changes experienced during storm surges affect greenhouse gas emissions (GHG; CO2, CH4, N2O) from tidal salt marsh soils. Understanding how storm surges influence ecosystem processes is critical for evaluating the ecosystem’s sensitivity to sea level rise…. More

in    0

We mapped tidal wetland gross primary production (GPP) with unprecedented detail for multiple wetland types across the continental United States (CONUS) at 16‐day intervals for the years 2000–2019. To accomplish this task, we developed the spatially explicit Blue Carbon (BC) model, which combined tidal wetland cover and field‐based eddy covariance tower data into a single… More

in    0

Over the past decades, the eddy covariance (EC) community has clearly demonstrated the power of networks; regional networks and FLUXNET have shown us that combining data across multiple sites creates a whole that is greater than the sum of its parts. The FLUXNET database has been used extensively to evaluate satellite measurements, inform Earth system… More