Future projections of evapotranspiration (ET) are of critical importance for agricultural and freshwater management and for predicting land–atmosphere feedbacks on the climate system. However, ET from phase 5 of the Coupled Model Intercomparison Project (CMIP5) simulations exhibits substantial biases, bolstering little confidence in future ET projections. Despite poor predictive skill and large bias of ET… More

in    0

Evapotranspiration (ET) is a key component of the atmospheric and terrestrial water and energy budgets. Satellite‐based vegetation index approaches have used remotely sensed vegetation and reanalysis meteorological properties with surface energy balance models to estimate global ET (MOD16 ET). We reconstructed satellite retrievals using in situ meteorology (Argonne‐ET) and evaluated them using a dense network… More

in    0

Releases of the greenhouse gases carbon dioxide (CO2) and methane (CH4) from thawing permafrost are expected to be among the largest feedbacks to climate from arctic ecosystems. However, the current net carbon (C) balance of terrestrial arctic ecosystems is unknown. Recent studies suggest that these ecosystems are sources, sinks, or approximately in balance at present…. More

in    0

Aerodynamic canopy height (ha) is the effective height of vegetation canopy for its influence on atmospheric fluxes and is a key parameter of surface‐atmosphere coupling. However, methods to estimate ha from data are limited. This synthesis evaluates the applicability and robustness of the calculation of ha from eddy covariance momentum‐flux data. At 69 forest sites,… More

in    0

Phenology is experiencing dramatic changes over deciduous forests in the USA. Estimates of trends in phenology on the continental scale are uncertain, however, with studies failing to agree on both the magnitude and spatial distribution of trends in spring and autumn. This is due to the sparsity of in situ records, uncertainties associated with remote… More

in    0

We investigated relationships between tree-ring δ13C and growth, and flux tower estimates of gross primary productivity (GPP) at Harvard Forest from 1992 to 2010. Seasonal variations of derived photosynthetic isotope discrimination (Δ13C) and leaf intercellular CO2 concentration (c i ) showed significant increasing trends for the dominant deciduous and coniferous species. Δ13C was positively correlated… More

in    0

The phenological response of vegetation to ongoing climate change may have great implications for hydrological regimes in the eastern United States. However, there have been few studies that analyze its resultant effect on catchment discharge dynamics, separating from dominant climatic controls. In this study, we examined the net effect of phenological variations on the long‐term… More

in    0

In nearly all large-scale terrestrial ecosystem models, soil respiration is represented as a function of soil temperature. However, the relationship between soil respiration and soil temperature is highly variable across sites and there is often a pronounced hysteresis in the soil respiration-temperature relationship over the course of the growing season. This phenomenon indicates the importance… More

in    0

There are few whole-canopy or ecosystem scale assessments of the interplay between canopy temperature and photosynthesis across both spatial and temporal scales. The stable oxygen isotope ratio (δ18O) of plant cellulose can be used to resolve a photosynthesis-weighted estimate of canopy temperature, but the method requires independent confirmation. We compare isotope-resolved canopy temperatures derived from… More

in    0

Net ecosystem exchange (NEE) measurements using the eddy covariance technique have been widely used for calibration and evaluation of carbon flux estimates from terrestrial ecosystem models as well as for remote sensing-based estimates across various spatial and temporal scales. Therefore, it is vital to fully understand the land surface characteristics within the area contributing to… More

in    0