Releases of the greenhouse gases carbon dioxide (CO2) and methane (CH4) from thawing permafrost are expected to be among the largest feedbacks to climate from arctic ecosystems. However, the current net carbon (C) balance of terrestrial arctic ecosystems is unknown. Recent studies suggest that these ecosystems are sources, sinks, or approximately in balance at present…. More

in    0

Carbonyl sulfide (OCS) has recently emerged as a tracer for terrestrial carbon uptake. While physiological studies relating OCS fluxes to leaf stomatal dynamics have been established at leaf and branch scales and incorporated into global carbon cycle models, the quantity of data from ecosystem-scale field studies remains limited. In this study, we employ established theoretical… More

in    0

Diurnal and vertical patterns of carbonyl sulfide (OCS) and CO2 mixing ratios above and within a 60‐m‐tall old‐growth temperate forest are presented. Canopy air from four different heights was sampled in situ using a continuous integrated cavity output spectroscopy analyzer during August–September 2014. Measurements revealed large vertical gradients in OCS, from which we inferred ecosystem… More

in    0

Aerodynamic canopy height (ha) is the effective height of vegetation canopy for its influence on atmospheric fluxes and is a key parameter of surface‐atmosphere coupling. However, methods to estimate ha from data are limited. This synthesis evaluates the applicability and robustness of the calculation of ha from eddy covariance momentum‐flux data. At 69 forest sites,… More

in    0

It is necessary to partition eddy covariance measurements of carbon dioxide exchange into its offsetting gross fluxes, canopy photosynthesis, and ecosystem respiration, to understand the biophysical controls on the net fluxes. And independent estimates of canopy photosynthesis (G) and ecosystem respiration (R) are needed to validate and parametrize carbon cycle models that are coupled with… More

in    0

Stable stratification of the nocturnal lower boundary layer inhibits convective turbulence, such that turbulent vertical transfer of ecosystem carbon dioxide (CO2), water vapor (H2O) and energy is driven by mechanically forced turbulence, either from frictional forces near the ground or top of a plant canopy, or from shear generated aloft. The significance of this last… More

in    0

Stable stratification of the nocturnal lower boundary layer inhibits convective turbulence, such that tur-bulent vertical transfer of ecosystem carbon dioxide (CO2), water vapor (H2O) and energy is driven bymechanically forced turbulence, either from frictional forces near the ground or top of a plant canopy,or from shear generated aloft. The significance of this last source of… More

in    0

Carbon dioxide (CO2) exchange was measured above the forest floor of a temperate Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco) and Western Hemlock (Tsuga heterophylla (Raf.) Sarg.) old-growth forest in southern Washington State. Continuous flux measurements were conducted from July 1998 to December 2003 using the eddy-covariance technique. Maximum observed fluxes were +6 mmol m2 s1 on… More

in    0