The accurate determination of land surface water fluxes at various spatiotemporal scales remains a challenge in hydrological sciences. It is intuitive that land surface net water flux (i.e., infiltration minus evapotranspiration) directly affects near-surface soil moisture. However, there exists no hydrological model suitable to calculate net water flux based on measured near-surface soil moisture data…. More

in    0

Future projections of evapotranspiration (ET) are of critical importance for agricultural and freshwater management and for predicting land–atmosphere feedbacks on the climate system. However, ET from phase 5 of the Coupled Model Intercomparison Project (CMIP5) simulations exhibits substantial biases, bolstering little confidence in future ET projections. Despite poor predictive skill and large bias of ET… More

in    0

Evapotranspiration (ET) is a key component of the atmospheric and terrestrial water and energy budgets. Satellite‐based vegetation index approaches have used remotely sensed vegetation and reanalysis meteorological properties with surface energy balance models to estimate global ET (MOD16 ET). We reconstructed satellite retrievals using in situ meteorology (Argonne‐ET) and evaluated them using a dense network… More

in    0