The biosphere–atmosphere exchange of methane (CH4) was estimated for a temperate/boreal lowland and wetland forest ecosystem in northern Wisconsin for 1997–1999 using the modified Bowen ratio (MBR) method. Gradients of CH4 and CO2 and CO2 flux were measured on the 447-m WLEF-TV tower as part of the Chequamegon Ecosystem–Atmosphere Study (ChEAS). No systematic diurnal variability… More

in    0

New observations of the vertically integrated CO2 mixing ratio, ⟨CO2⟩, from ground-based remote sensing show that variations in CO2⟩ are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large-scale and local fluxes. Observations of both ⟨CO2⟩ and CO2… More

in    0

Significant climate risks are associated with a positive carbon–temperature feedback in northern latitude carbon-rich ecosystems, making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on simultaneous and quasi-continuous ecosystem observations… More

in    0

Large lakes may constitute a significant component of regional surface–atmosphere fluxes, but few efforts have been made to quantify these fluxes. Tracer-transport inverse models that infer the CO2 flux from the atmospheric concentration typically assume that the influence from large lakes is negligible. CO2 observations from a tall tower in Wisconsin segregated by wind direction… More

in    0

We examine the atmospheric budget of CO2 at temperate continental sites in the Northern Hemisphere. On a monthly time scale both surface exchange and atmospheric transport are important in determining the rate of change of CO2 mixing ratio at these sites. Vertical differences between the atmospheric boundary layer and free troposphere over the continent are… More

in    0

Forest management presents challenges to accurate prediction of water and carbon exchange between the land surface and atmosphere, due to its alteration of forest structure and composition. We examined how forest species types in northern Wisconsin affect landscape scale water fluxes predicted from models driven by remotely sensed forest classification. A site-specific classification was developed for… More

in    0

The Ecosystem Demography (ED) model was parameterized with ecological, forest inventory, and historical land use observations in an intensively managed, wetland-rich forested landscape in the upper midwest United States. Model results were evaluated against a regional network of eddy covariance flux towers and analyzed about the roles of disturbance, forest management, and CO2 fertilization. The… More

in    0

Observations of regional net ecosystem exchange (NEE) of CO2 for 1997–2007 were analyzed for climatic controls on interannual variability (IAV). Quantifying IAV of regional (104–106 km2) NEE over long time periods is key to understanding potential feedbacks between climate and the carbon cycle. Four independent techniques estimated monthly regional NEE for 104 km2 in a… More

in    0

Carbon dioxide fluxes were examined over the growing seasons of 2002 and 2003 from 14 different sites in Upper Midwest (USA) to assess spatial variability of ecosystem–atmosphere CO2 exchange. These sites were exposed to similar temperature/precipitation regimes and spanned a range of vegetation types typical of the region (northern hardwood, mixed forest, red pine, jack… More

in    0