Releases of the greenhouse gases carbon dioxide (CO2) and methane (CH4) from thawing permafrost are expected to be among the largest feedbacks to climate from arctic ecosystems. However, the current net carbon (C) balance of terrestrial arctic ecosystems is unknown. Recent studies suggest that these ecosystems are sources, sinks, or approximately in balance at present…. More

in    0

Land‐atmosphere interactions are important to climate prediction, but the underlying effects of surface forcing of the atmosphere are not well understood. In the U.S. Southern Great Plains, grassland/pasture and winter wheat are the dominant land covers but have distinct growing periods that may differently influence land‐atmosphere coupling during spring and summer. Variables that influence surface… More

in    0

Climate, vegetation cover, and management create finescale heterogeneity in unirrigated agricultural regions, with important but not well-quantified consequences for spatial and temporal variations in surface CO2, water, and heat fluxes. Eddy covariance fluxes were measured in seven agricultural fields—comprising winter wheat, pasture, and sorghum—in the U.S. Southern Great Plains (SGP) during the 2001–03 growing seasons…. More

in    0

Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of Earth’s croplands. As such, it plays an important role in carbon cycling and land–atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under… More

in    0

It is necessary to partition eddy covariance measurements of carbon dioxide exchange into its offsetting gross fluxes, canopy photosynthesis, and ecosystem respiration, to understand the biophysical controls on the net fluxes. And independent estimates of canopy photosynthesis (G) and ecosystem respiration (R) are needed to validate and parametrize carbon cycle models that are coupled with… More

in    0