Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid… More

in    0

It is necessary to partition eddy covariance measurements of carbon dioxide exchange into its offsetting gross fluxes, canopy photosynthesis, and ecosystem respiration, to understand the biophysical controls on the net fluxes. And independent estimates of canopy photosynthesis (G) and ecosystem respiration (R) are needed to validate and parametrize carbon cycle models that are coupled with… More

in    0

Measured surface-atmosphere fluxes of energy (sensible heat, H, and latent heat, LE) and CO2 (FCO2) represent the “true” flux plus or minus potential random and systematic measurement errors. Here, we use data from seven sites in the AmeriFlux network, including five forested sites (two of which include “tall tower” instrumentation), one grassland site, and one… More

in    0

Models used to estimate net ecosystem productivity (NEP) during climate change should first be shown to simulate the effects on NEP of interannual variability in current climates. Energy and CO2 fluxes simulated by the ecosystem model ecosys were compared with those measured by eddy covariance over a semi-arid ungrazed grassland near Lethbridge, Alberta to improve… More

in    0

Net ecosystem productivity (NEP) during August 2003 was measured by using eddy covariance above 17 forest and 3 peatland sites along an east–west continental-scale transect in Canada. Measured sites included recently disturbed stands, young forest stands, intermediate-aged conifer stands, mature deciduous stands, mature conifer stands, fens, and an open shrub bog. Diurnal courses of NEP… More

in    0

Chamber measurements of total ecosystem respiration (TER) in a native Canadian grassland ecosystem were made during two study years with different precipitation. The growing season (April–September) precipitation during 2001 was less than one-half of the 30-year mean (1971–2000), while 2002 received almost double the normal growing season precipitation. As a consequence soil moisture remained higher… More

in    0