Releases of the greenhouse gases carbon dioxide (CO2) and methane (CH4) from thawing permafrost are expected to be among the largest feedbacks to climate from arctic ecosystems. However, the current net carbon (C) balance of terrestrial arctic ecosystems is unknown. Recent studies suggest that these ecosystems are sources, sinks, or approximately in balance at present…. More

in    0

In nearly all large-scale terrestrial ecosystem models, soil respiration is represented as a function of soil temperature. However, the relationship between soil respiration and soil temperature is highly variable across sites and there is often a pronounced hysteresis in the soil respiration-temperature relationship over the course of the growing season. This phenomenon indicates the importance… More

in    0

Global-scale studies indicate that semiarid regions strongly regulate the terrestrial carbon sink. However, we lack understanding of how climatic shifts, such as decadal drought, impact carbon sequestration across the wide range of structural diversity in semiarid ecosystems. Therefore, we used eddy covariance measurements to quantify how net ecosystem production of carbon dioxide (NEP) differed with… More

in    0

The global terrestrial carbon sink offsets one-third of the world’s fossil fuel emissions, but the strength of this sink is highly sensitive to large-scale extreme events. In 2012, the contiguous United States experienced exceptionally warm temperatures and the most severe drought since the Dust Bowl era of the 1930s, resulting in substantial economic damage. It… More

in    0