Channel transmission losses alter the streamflow response of arid and semiarid watersheds and promote focused groundwater recharge. This process has been primarily studied in dryland channels draining large areas that are displaced away from hillslope runoff generation. In contrast, small watersheds on arid piedmont slopes allow the investigation of interactive hillslope and channel processes that… More

in    0

A critical hydrologic process in arid and semiarid regions is the interaction between ephemeral channels and groundwater aquifers. Generally, it has been found that ephemeral channels contribute to groundwater recharge when streamflow infiltrates into the sandy bottoms of channels. This process has traditionally been studied in channels that drain large areas (tens to hundreds of… More

in    0

Soil moisture dynamics reflect the complex interactions of meteorological conditions with soil, vegetation and terrain properties. In this study, intermediate-scale soil moisture estimates from the cosmic-ray neutron sensing (CRNS) method are evaluated for two semiarid ecosystems in the southwestern United States: a mesquite savanna at the Santa Rita Experimental Range (SRER) and a mixed shrubland… More

in    0

Land surface states play important roles in the turbulent exchanges between ecosystems and their overlying atmosphere. Field methods to estimate turbulent fluxes have time‐variable source areas, while land surface observations are typically obtained at single plots with a smaller measurement scale. In this study, we characterize land‐atmosphere interactions in two semiarid ecosystems in the southwestern… More

in    0

The North American monsoon (NAM) contributes roughly half of the annual precipitation in the Chihuahuan Desert from July to September. Relatively frequent, intense storms increase soil moisture and lead to ephemeral runoff. Quantifying these processes, however, is difficult due to the sparse nature of existing observations. This study presents results from a dense network of… More

in    0