Assessing The Past And Future Distribution And Productivity Of Ponderosa Pine In The Pacific Northwest Using A Process Model, 3-Pg

  • Sites: US-Me2, US-Me4, US-Me5
  • Coops, N. C., Waring, R. H., Law, B. E. (2005/04) Assessing The Past And Future Distribution And Productivity Of Ponderosa Pine In The Pacific Northwest Using A Process Model, 3-Pg, Ecological Modelling, 183(1), 107-124. https://doi.org/10.1016/j.ecolmodel.2004.08.002
  • Funding Agency: —

  • Climate variability at decadal scales influences not only the growth of widely distributed species such as Pinus ponderosa, but also can have an effect on the timing and severity of fire and insect outbreaks that may alter species distributions. In this paper, we present a spatial modelling technique to assess the influence of climatic variability on the annual productivity of P. ponderosa in the Pacific Northwest (PNW) of North America over the past 100 years and infer how a sustained change in climate might alter the geographic distribution of this species across defined ecotones. Field observations were used to establish criteria for P. ponderosa dominance including: (1) maximum summer leaf area index (LAI), ranges between 1.5 and 2.5; (2) 80% of available soil water is depleted during summer months; and (3) soil water will return to full capacity at least once during the year. Where these three criteria were not met, eventual replacement of P. ponderosa would be predicted. We utilized a simple physiological model, Physiological Principles for Predicting Growth (3-PG) to predict annual variation in LAI from climatic data provided by the Oregon Climate Service over the period from 1900 to 2000 and from broad scale 0.5°-spatial resolution future climate projections produced by the Hadley Climate Center, UK. From these simulations we produced a series of maps that display predicted shifts of zones where ponderosa pine might be expected to contract or expand its range if modeled climatic conditions at annual and decadal intervals were sustained. From the historical simulations, the most favorable year for pine dominance was 1958 and the least favorable, 1924. The most favorable decade was in the 1900s and the least favorable in the 1930s. The future predictions indicate a reduction in the current range of the P. ponderosa type along the western Cascade Range however, an increase along the east side and inland PNW. The model predicts that pine dominance should increase between 5 and 10% over the next century, mainly in inland Oregon, Idaho, and Washington.