Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid… More

in    0

Aerodynamic canopy height (ha) is the effective height of vegetation canopy for its influence on atmospheric fluxes and is a key parameter of surface‐atmosphere coupling. However, methods to estimate ha from data are limited. This synthesis evaluates the applicability and robustness of the calculation of ha from eddy covariance momentum‐flux data. At 69 forest sites,… More

in    0

The possibility of global, three-dimensional remote sensing of forest structure with interferometric synthetic aperture radar (InSAR) bears on important forest ecological processes, particularly the carbon cycle. InSAR supplements two-dimensional remote sensing with information in the vertical dimension. Its strengths in potential for global coverage complement those of lidar (light detecting and ranging), which has the… More

in    0

To assess the relative influence of edaphoclimatic gradients and stand replacing disturbance on the soil respiration of Oregon forests, we measured annual soil respiration at 36 independent forest plots arranged as three replicates of four age classes in each of three climatically distinct forest types. Annual soil respiration for the year 2001 was computed by… More

in    0

We investigated variation in carbon stock in soils and detritus (forest floor and woody debris) in chronosequences that represent the range of forest types in the US Pacific Northwest. Stands range in age from <13 to >600 years. Soil carbon, to a depth of 100 cm, was highest in coastal Sitka spruce/western hemlock forests (36±10 kg C m−2) and… More

in    0

As forests age, their structure and productivity change, yet in some cases, annual rates of water loss remain unchanged. To identify mechanisms that might explain such observations, and to determine if widely different age classes of forests differ functionally, we examined young (Y, 25 years), mature (M, 90 years) and old (O, 250 years) ponderosa… More

in    0