Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid… More
Accurate estimates of leaf area index (LAI) and leaf angle distribution (LAD) are important for estimating the exchange of energy and gases in vegetative canopies. Direct estimates of LAI and LAD are laborious, time consuming and often times destructive. Stewart and Dwyer [Agric. For. Meteorol. 66 (1993) 247] introduced a mathematical method to calculate LAI… More
High evaporative demand and periodic drought characterize the growing season in midwestern grasslands relative to deciduous forests of the eastern US, and predicted climatic changes suggest that these climatic extremes may be exacerbated. Despite this less than optimal environment for tree seedling establishment, deciduous trees have expanded into adjacent tallgrass prairie within the last century… More
Mapping and monitoring of leaf area index (LAI) is important for spatially distributed modeling of vegetation productivity, evapotranspiration, and surface energy balance. Global LAI surfaces will be an early product of the MODIS Land Science Team, and the requirements for LAI validation at selected sites have prompted interest in accurate LAI mapping at a more… More
In tallgrass prairie, plant species interactions regulated by their associated mycorrhizal fungi may be important forces that influence species coexistence and community structure; however, the mechanisms and magnitude of these interactions remain unknown. The objective of this study was to determine how interspecific competition, mycorrhizal symbiosis, and their interactions influence plant community structure. We conducted… More
Substantial research seeks to improve estimates of ecosystem processes and fluxes at a range of scales, notably from the stand scale (<1 km2) using ecosystem physiology and eddy covariance techniques, to the landscape (∼102 km2) and global (108 km2) scales using a variety of modeling and data acquisition approaches. One approach uses remotely sensed ecosystem… More
Vegetation light use efficiency is a key physiological parameter at the canopy scale, and at the daily time step is a component of remote sensing algorithms for scaling gross primary production (GPP) and net primary production (NPP) over regional to global domains. For the purposes of calibrating and validating the light use efficiency (εg) algorithms,… More