Sublimation is an important hydrological flux in cold, snow-dominated ecosystems. In high-elevation spruce-fir forests of western North America, spruce beetle outbreaks have killed trees, reduced the canopy, and altered processes that control sublimation. We evaluated two hypotheses related to effects of disturbance on sublimation in this ecosystem: (1) the dominant source for sublimation is canopy… More

in    0

Future projections of evapotranspiration (ET) are of critical importance for agricultural and freshwater management and for predicting land–atmosphere feedbacks on the climate system. However, ET from phase 5 of the Coupled Model Intercomparison Project (CMIP5) simulations exhibits substantial biases, bolstering little confidence in future ET projections. Despite poor predictive skill and large bias of ET… More

in    0

Evapotranspiration (ET) is a key component of the atmospheric and terrestrial water and energy budgets. Satellite‐based vegetation index approaches have used remotely sensed vegetation and reanalysis meteorological properties with surface energy balance models to estimate global ET (MOD16 ET). We reconstructed satellite retrievals using in situ meteorology (Argonne‐ET) and evaluated them using a dense network… More

in    0

Aerodynamic canopy height (ha) is the effective height of vegetation canopy for its influence on atmospheric fluxes and is a key parameter of surface‐atmosphere coupling. However, methods to estimate ha from data are limited. This synthesis evaluates the applicability and robustness of the calculation of ha from eddy covariance momentum‐flux data. At 69 forest sites,… More

in    0