Releases of the greenhouse gases carbon dioxide (CO2) and methane (CH4) from thawing permafrost are expected to be among the largest feedbacks to climate from arctic ecosystems. However, the current net carbon (C) balance of terrestrial arctic ecosystems is unknown. Recent studies suggest that these ecosystems are sources, sinks, or approximately in balance at present…. More

in    0

Aerodynamic canopy height (ha) is the effective height of vegetation canopy for its influence on atmospheric fluxes and is a key parameter of surface‐atmosphere coupling. However, methods to estimate ha from data are limited. This synthesis evaluates the applicability and robustness of the calculation of ha from eddy covariance momentum‐flux data. At 69 forest sites,… More

in    0

Global-scale studies suggest that dryland ecosystems dominate an increasing trend in the magnitude and interannual variability of the land CO2 sink. However, such analyses are poorly constrained by measured CO2 exchange in drylands. Here we address this observation gap with eddy covariance data from 25 sites in the water-limited Southwest region of North America with… More

in    0

Ponderosa pine (Pinus ponderosa) forests of the southwestern United States are a mosaic of stands where undisturbed forests are carbon sinks, and stands recovering from wildfires may be sources of carbon to the atmosphere for decades after the fire. However, the relative magnitude of these sinks and sources has never been directly measured in this… More

in    0

Disturbances are important for renewal of North American forests. Here we summarize more than 180 site years of eddy covariance measurements of carbon dioxide flux made at forest chronosequences in North America. The disturbances included stand-replacing fire (Alaska, Arizona, Manitoba, and Saskatchewan) and harvest (British Columbia, Florida, New Brunswick, Oregon, Quebec, Saskatchewan, and Wisconsin) events,… More

in    0

Disturbances alter ecosystem carbon dynamics, often by reducing carbon uptake and stocks. We compared the impact of two types of disturbances that represent the most likely future conditions of currently dense ponderosa pine forests of the southwestern United States: (1) high-intensity fire and (2) thinning, designed to reduce fire intensity. High-severity fire had a larger… More

in    0

Better understanding of variation in soil carbon dioxide (CO2) efflux caused by measurement techniques is needed, especially over gradients of site disturbance, to accurately estimate the global carbon cycle. We present soil CO2 efflux data from a gradient of disturbance to ponderosa pine (Pinus ponderosa C. Lawson var. scopulorum Engelm.) forests in northern Arizona, USA… More

in    0