Climate extremes such as heat waves and droughts are projected to occur more Frequently with increasing temperature and an intensified hydrological cycle. It is Important to understand and quantify how forest carbon fluxes respond to heat and drought stress. In this study, we developed a series of daily indices of sensitivity to heat and drought… More
Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid… More
Reforesting and managing ecosystems have been proposed as ways to mitigate global warming and offset anthropogenic carbon emissions. The intent of our opinion piece is to provide a perspective on how well plants and ecosystems sequester carbon. The ability of individual plants and ecosystems to mine carbon dioxide from the atmosphere, as defined by rates… More
Aerodynamic canopy height (ha) is the effective height of vegetation canopy for its influence on atmospheric fluxes and is a key parameter of surface‐atmosphere coupling. However, methods to estimate ha from data are limited. This synthesis evaluates the applicability and robustness of the calculation of ha from eddy covariance momentum‐flux data. At 69 forest sites,… More
It is necessary to partition eddy covariance measurements of carbon dioxide exchange into its offsetting gross fluxes, canopy photosynthesis, and ecosystem respiration, to understand the biophysical controls on the net fluxes. And independent estimates of canopy photosynthesis (G) and ecosystem respiration (R) are needed to validate and parametrize carbon cycle models that are coupled with… More