Actual evapotranspiration (ET) is a major component of the water balance. While several international flux measurement programs have been executed in the tropical rain forest of the Amazon, those measurements represent the evaporative process at a few selected sites only. The aim of this study is to obtain the spatial distribution of ET, using remote… More

in    0

Aerodynamic canopy height (ha) is the effective height of vegetation canopy for its influence on atmospheric fluxes and is a key parameter of surface‐atmosphere coupling. However, methods to estimate ha from data are limited. This synthesis evaluates the applicability and robustness of the calculation of ha from eddy covariance momentum‐flux data. At 69 forest sites,… More

in    0

Understanding how tropical forest carbon balance will respond to global change requires knowledge of individual heterotrophic and autotrophic respiratory sources, together with factors that control respiratory variability. We measured leaf, live wood, and soil respiration, along with additional environmental factors over a 1-yr period in a Central Amazon terra firme forest. Scaling these fluxes to… More

in    0

The Large-scale Biosphere–Atmosphere Experiment in Amazonia (LBA) is a multinational, interdisciplinary research program led by Brazil. Ecological studies in LBA focus on how tropical forest conversion, regrowth, and selective logging influence carbon storage, nutrient dynamics, trace gas fluxes, and the prospect for sustainable land use in the Amazon region. Early results from ecological studies within… More

in    0

The usefulness of eddy covariance for understanding terrestrial carbon exchange has been hampered by uncertainty over the magnitude and causes of a systematic underestimation of CO2 efflux on calm nights. We combined in situ measurements of the temperature, wind and CO2 profile with nocturnal Land Surface Temperature (LST) imagery from the Advanced Spaceborne Thermal Emission… More

in    0