Methane (CH4) emissions and carbon uptake in temperate freshwater wetlands act in opposing directions in the context of global radiative forcing. Large uncertainties exist for the rates of CH4 emissions making it difficult to determine the extent that CH4 emissions counteract the carbon sequestration of wetlands. Urban temperate wetlands are typically small and feature highly… More

in    0

Phenology is experiencing dramatic changes over deciduous forests in the USA. Estimates of trends in phenology on the continental scale are uncertain, however, with studies failing to agree on both the magnitude and spatial distribution of trends in spring and autumn. This is due to the sparsity of in situ records, uncertainties associated with remote… More

in    0

We investigated relationships between tree-ring δ13C and growth, and flux tower estimates of gross primary productivity (GPP) at Harvard Forest from 1992 to 2010. Seasonal variations of derived photosynthetic isotope discrimination (Δ13C) and leaf intercellular CO2 concentration (c i ) showed significant increasing trends for the dominant deciduous and coniferous species. Δ13C was positively correlated… More

in    0

The phenological response of vegetation to ongoing climate change may have great implications for hydrological regimes in the eastern United States. However, there have been few studies that analyze its resultant effect on catchment discharge dynamics, separating from dominant climatic controls. In this study, we examined the net effect of phenological variations on the long‐term… More

in    0

Plant phenology timings, such as spring green-up and autumn senescence, are essential state information characterizing biological responses and terrestrial carbon cycles. Current efforts for the in situ reflectance measurements are not enough to obtain the exact interpretation of how seasonal spectral signature responds to phenological stages in boreal evergreen needleleaf forests. This study shows the… More

in    0