Land‐atmosphere interactions are important to climate prediction, but the underlying effects of surface forcing of the atmosphere are not well understood. In the U.S. Southern Great Plains, grassland/pasture and winter wheat are the dominant land covers but have distinct growing periods that may differently influence land‐atmosphere coupling during spring and summer. Variables that influence surface… More

in    0

Two indirect gap fraction methods for estimating leaf area index (LAI) are compared with estimates from litterfall collections in a mixed-age oak-hickory forest. One indirect method uses averaged, direct beam penetration data obtained with a moving tram. The second uses a portable light sensor system that measures diffuse light penetration for five sky sectors between… More

in    0

Data-model integration plays a critical role in assessing and improving our capacity to predict ecosystem dynamics. Similarly, the ability to attach quantitative statements of uncertainty around model forecasts is crucial for model assessment and interpretation and for setting field research priorities. Bayesian methods provide a rigorous data assimilation framework for these applications, especially for problems… More

in    0

Aerodynamic canopy height (ha) is the effective height of vegetation canopy for its influence on atmospheric fluxes and is a key parameter of surface‐atmosphere coupling. However, methods to estimate ha from data are limited. This synthesis evaluates the applicability and robustness of the calculation of ha from eddy covariance momentum‐flux data. At 69 forest sites,… More

in    0

We report long-term continuous phenological and sky images taken by time-lapse cameras through the Phenological Eyes Network (http://www.pheno-eye.org. Accessed 29 May 2018) in various ecosystems from the Arctic to the tropics. Phenological images are useful in recording the year-to-year variability in the timing of flowering, leaf-flush, leaf-coloring, and leaf-fall and detecting the characteristics of phenological… More

in    0

A fibre-optic DTS (distributed temperature sensing) system using Raman-scattering optical time domain reflectometry was deployed to monitor a boreal forest research site in the interior of Alaska. Surface temperatures range between −40°C in winter and 30°C in summer at this site. In parallel experiments, a fibre-optic cable sensor system (multi-mode, GI50/125, dual core; 3.4mm), monitored… More

in    0

The wetness of high-latitude land surfaces is strongly dependent on the dif- ference between precipitation (P) and evapotranspiration (ET). If climate models are to capture the trajectory of surface wetness in high latitudes, they must be able to simulate the seasonality and variations of the surface moisture fluxes, as well as the sensitivities to the… More

in    0

The exchanges of carbon dioxide (CO2), water vapor, and energy were measured nearly continuously since 1996 over a mixed mature transition forest at the Borden Forest Research Station, in southern Ontario, Canada. Borden Forest, one of the longest running flux towers in North America, is located in the temperate–boreal ecotone. This transitional region, which includes… More

in    0