AmeriFlux Logo

US-Whs: Walnut Gulch Lucky Hills Shrub

Tower_team:
PI: Russ Scott russ.scott@ars.usda.gov - United States Department of Agriculture
Technician: Ross Bryant Ross.Bryant@ars.usda.gov - USDA-ARS-SWRC
Lat, Long: 31.7438, -110.0522
Elevation(m): 1370
Network Affiliations: AmeriFlux
Vegetation IGBP: OSH (Open Shrublands)
Climate Koeppen: Bsk (Steppe: warm winter)
Mean Annual Temp (°C): 17.6
Mean Annual Precip. (mm): 320
Flux Species Measured: CO2, H2O
Years Data Collected: AmeriFlux: 2007 - Present
Description:
A semiarid Chihuahuan Desert shrubland located in the USDA-ARS Walnut Gulch Experimental Watershed (WGEW) surrounding the town of Tombstone, AZ. The site ...
See MoreShow Less
URL: https://www.ars.usda.gov/pacific-west-area/tucson-az/southwest-watershed-research
Research Topics: Desert shrubland carbon and water cycling, ET partitioning, soil respiration
Acknowledgment:
Site Photo More Site Images
AmeriFlux Logo

Site Publication More Site Publications
Scott, R.L., Biederman, J.A., Hamerlynck, E.P., Barron-Gafford, G. 2015. The carbon balance pivot point of southwestern U.S. semiarid ecosystems: Insights from the 21st century drought, Journal of Geophysical Research: Biogeosciences, 120, 2612-2624.

US-Whs: Walnut Gulch Lucky Hills Shrub

Instructions for DOIs for This Site

When using DOIs for this site, use the publications and acknowledgments listed below.

DOIs

Publications to use for Citations for this Site

Acknowledgements

Resources

US-Whs: Walnut Gulch Lucky Hills Shrub

This page displays the list of downloads of data for the site {{siteId}}.

NOTE: Version refers to the version of the AmeriFlux BASE-BADM product for the site was downloaded by the user and the download count indicates the number of times the person downloaded that version. The download count indicates the number of times the person downloaded the data.

Year Range
 Showing {{startItem + 1}} to {{(startItem + items) > filtered.length ? filtered.length : (startItem + items)}} of {{filtered.length}} results
Products

Items Per Page:  
Date Email Name Version Intended Use Intended Use Description Download Count
{{dlObject.timeStamp}} {{dlObject.email}} {{dlObject.displayName}} {{dlObject.version}} {{dlObject.intendedUse}} {{dlObject.comment}} {{dlObject.downloadCounter}}
No results to display
Date Name Product Version Intended Use Intended Use Description Download Count
{{dlObject.timeStamp}} {{dlObject.displayName}} {{dlObject.dataProduct}} {{dlObject.version}} {{dlObject.intendedUse}} {{dlObject.comment}} {{dlObject.downloadCounter}}
No results to display

 Showing {{startItem + 1}} to {{(startItem + items) > filtered.length ? filtered.length : (startItem + items)}} of {{filtered.length}} results

Items Per Page:  

Not Found

Uh Oh. Something is missing. Try double checking the URL and try again.

US-Whs: Walnut Gulch Lucky Hills Shrub

MODIS NDVI

Normalized Difference Vegetation Index image for this site.

For time series, data download and other MODIS products for this site, visit MODIS cutouts.

Citation

Loading...

Citation:

ORNL DAAC. 2008. MODIS Collection 5 Fixed Sites Subsetting and Visualization Tool. ORNL DAAC, Oak Ridge, Tennessee, USA. http://dx.doi.org/10.3334/ORNLDAAC/1251

Read more on how to cite these MODIS images. Data come from NASA’s MODIS instruments installed on satellites Terra and Aqua, which scan the entire Earth’s surface every one to two days.

US-Whs: Walnut Gulch Lucky Hills Shrub

Year Publication
2018 Smith, W. K., Biederman, J. A., Scott, R. L., Moore, D. J., He, M., Kimball, J. S., Yan, D., Hudson, A., Barnes, M. L., MacBean, N., Fox, A. M., Litvak, M. E. (2018) Chlorophyll Fluorescence Better Captures Seasonal And Interannual Gross Primary Productivity Dynamics Across Dryland Ecosystems Of Southwestern North America, Geophysical Research Letters, 45(2), 748-757.
2010 Scott, R. L. (2010) Using Watershed Water Balance To Evaluate The Accuracy Of Eddy Covariance Evaporation Measurements For Three Semiarid Ecosystems, Agricultural And Forest Meteorology, 150(2), 219-225.
2007 Watts, C. J., Scott, R. L., Garatuza-Payan, J., Rodriguez, J. C., Prueger, J. H., Kustas, W. P., Douglas, M. (2007) Changes In Vegetation Condition And Surface Fluxes During NAME 2004, Journal Of Climate, 20(9), 1810-1820.
2015 Scott, R. L., Biederman, J. A., Hamerlynck, E. P., Barron-Gafford, G. A. (2015) The Carbon Balance Pivot Point Of Southwestern U.S. Semiarid Ecosystems: Insights From The 21st Century Drought, Journal Of Geophysical Research: Biogeosciences, 120(12), 2612-2624.
2009 Moran, M., Scott, R., Keefer, T., Emmerich, W., Hernandez, M., Nearing, G., Paige, G., Cosh, M., O’Neill, P. (2009) Partitioning Evapotranspiration In Semiarid Grassland And Shrubland Ecosystems Using Time Series Of Soil Surface Temperature, Agricultural And Forest Meteorology, 149(1), 59-72.
2016 Biederman, J. A., Scott, R. L., Goulden, M. L., Vargas, R., Litvak, M. E., Kolb, T. E., Yepez, E. A., Oechel, W. C., Blanken, P. D., Bell, T. W., Garatuza-Payan, J., Maurer, G. E., Dore, S., Burns, S. P. (2016) Terrestrial Carbon Balance In A Drier World: The Effects Of Water Availability In Southwestern North America, Global Change Biology, 22(5), 1867-1879.
2013 Hamerlynck, E. P., Scott, R. L., Sánchez-Cañete, E. P., Barron-Gafford, G. A. (2013) Nocturnal Soil CO2 Uptake And Its Relationship To Subsurface Soil And Ecosystem Carbon Fluxes In A Chihuahuan Desert Shrubland, Journal Of Geophysical Research: Biogeosciences, 118(4), 1593-1603.
2010 Moran, M. S., Hamerlynck, E. P., Scott, R. L., Stone, J. J., Holifield Collins, C. D., Keefer, T. O., Bryant, R., DeYoung, L., Nearing, G. S., Sugg, Z., Hymer, D. C. (2010) Hydrologic Response To Precipitation Pulses Under And Between Shrubs In The Chihuahuan Desert, Arizona, Water Resources Research, 46(W10509), n/a-n/a.
2006 Scott, R. L., Huxman, T. E., Cable, W. L., Emmerich, W. E. (2006) Partitioning Of Evapotranspiration And Its Relation To Carbon Dioxide Exchange In A Chihuahuan Desert Shrubland, Hydrological Processes, 20(15), 3227-3243.
2008 Li, F., Kustas, W. P., Anderson, M. C., Prueger, J. H., Scott, R. L. (2008) Effect Of Remote Sensing Spatial Resolution On Interpreting Tower-Based Flux Observations, Remote Sensing Of Environment, 112(2), 337-349.
2015 Scott, R.L., Biederman, J.A., Hamerlynck, E.P., Barron-Gafford, G. (2015) The carbon balance pivot point of southwestern U.S. semiarid ecosystems: Insights from the 21st century drought, Journal of Geophysical Research: Biogeosciences, 120, 2612-2624.
2016 Wolf, S., Keenan, T.F., Fisher, J.B., Baldocchi, D.D., Desai, A.R., Richardson, A.D., Scott, R.L., Law, B.E., Litvak, M.E., Brunsell, N.A., Peters, W., van der Laan-Luijkx, I.T. (2016) Warm spring reduced carbon cycle impact of the 2012 US summer drought, Proceedings of the National Academy of Sciences, 113(21), 5880-5885.

US-Whs: Walnut Gulch Lucky Hills Shrub

BADM for This Site

Access the Biological, Ancillary, Disturbance and Metadata (BADM) information and data for this site.

BADM contain information for many uses, such as characterizing a site’s vegetation and soil, describing disturbance history, and defining instrumentation for flux processing. They complement the flux/met data.

* Online updates are shown on the Overview tab real time. However, downloaded BADM files will not reflect those updates until they have been reviewed for QA/QC.

US-Whs: Walnut Gulch Lucky Hills Shrub

Wind Roses

Click an image below to enlarge it, or use the navigation panel.
  • Image scale: 863m x 863m
  • Data Collected:
  • Wind roses use variables ‘WS’ and ‘WD’.
    Download Data Download Wind Rose as Image File (PNG)

    Wind Speed (m/s)

  • Graph Type
  • Wind Speed Scale
  • Wind Direction Scale (%)
  • Show Satellite Image
  • Show Wind Rose
  • Annual Average
    About Ameriflux Wind Roses
    Wind Rose Explanation
    wind rose gives a succinct view of how wind speed and direction are typically distributed at a particular location. Presented in a circular format, a wind rose shows the frequency and intensity of winds blowing from particular directions. The length of each “spoke” around the circle indicates the amount of time (frequency) that the wind blows from a particular direction. Colors along the spokes indicate categories of wind speed (intensity). Each concentric circle represents a different frequency, emanating from zero at the center to increasing frequencies at the outer circles
    Utility
    This information can be useful to gain insight into regions surrounding a flux tower that contribute to the measured fluxes, and how those regions change in dependence of the time of day and season. The wind roses presented here are for four periods of the year, and in 16 cardinal directions. Graphics are available for all sites in the AmeriFlux network based on reported wind measurements at each site.
    Data from each site can be downloaded by clicking the ‘download’ button.
    Hover the cursor over a wind rose to obtain directions, speeds and intensities.
    Note that wind roses are not equivalent to flux footprints. Specifically, the term flux footprint describes an upwind area “seen” by the instruments measuring vertical turbulent fluxes, such that heat, water, gas and momentum transport generated in this area is registered by the instruments. Wind roses, on the other hand, identify only the direction and speed of wind.
    Where do these data come from?
    The wind roses are based on observed hourly data from the sites registered with the AmeriFlux Network.
    Parameters for AmeriFlux Wind Roses
    To use wind roses for a single AmeriFlux site, the following parameters may be most useful:
    • Wind Speed Scale: Per Site
    • Wind Direction Scale (%): Per Site
    To compare wind roses from more than one single AmeriFlux site, the following parameters may be most useful:
    • Wind Speed Scale: Non-Linear
    • Wind Direction Scale (%): AmeriFlux
    Mar - Jun; 6am - 6pm
    Mar - Jun; 6pm - 6am
    Jun - Sep; 6am - 6pm
    Jun - Sep; 6pm - 6am
    Sep - Dec; 6am - 6pm
    Sep - Dec; 6pm - 6am
    Dec - Mar; 6am - 6pm
    Dec - Mar; 6pm - 6am