Phenology is experiencing dramatic changes over deciduous forests in the USA. Estimates of trends in phenology on the continental scale are uncertain, however, with studies failing to agree on both the magnitude and spatial distribution of trends in spring and autumn. This is due to the sparsity of in situ records, uncertainties associated with remote… More

in    0

We investigated relationships between tree-ring δ13C and growth, and flux tower estimates of gross primary productivity (GPP) at Harvard Forest from 1992 to 2010. Seasonal variations of derived photosynthetic isotope discrimination (Δ13C) and leaf intercellular CO2 concentration (c i ) showed significant increasing trends for the dominant deciduous and coniferous species. Δ13C was positively correlated… More

in    0

The phenological response of vegetation to ongoing climate change may have great implications for hydrological regimes in the eastern United States. However, there have been few studies that analyze its resultant effect on catchment discharge dynamics, separating from dominant climatic controls. In this study, we examined the net effect of phenological variations on the long‐term… More

in    0

In nearly all large-scale terrestrial ecosystem models, soil respiration is represented as a function of soil temperature. However, the relationship between soil respiration and soil temperature is highly variable across sites and there is often a pronounced hysteresis in the soil respiration-temperature relationship over the course of the growing season. This phenomenon indicates the importance… More

in    0

There are few whole-canopy or ecosystem scale assessments of the interplay between canopy temperature and photosynthesis across both spatial and temporal scales. The stable oxygen isotope ratio (δ18O) of plant cellulose can be used to resolve a photosynthesis-weighted estimate of canopy temperature, but the method requires independent confirmation. We compare isotope-resolved canopy temperatures derived from… More

in    0

Net ecosystem exchange (NEE) measurements using the eddy covariance technique have been widely used for calibration and evaluation of carbon flux estimates from terrestrial ecosystem models as well as for remote sensing-based estimates across various spatial and temporal scales. Therefore, it is vital to fully understand the land surface characteristics within the area contributing to… More

in    0

Heterotrophic respiration (Rh), microbial processing of soil organic matter to carbon dioxide (CO2), is a major, yet highly uncertain, carbon (C) flux from terrestrial systems to the atmosphere. Temperature sensitivity of Rh is often represented with a simple Q10 function in ecosystem models and earth system models (ESMs), sometimes accompanied by an empirical soil moisture… More

in    0

Stomatal conductance influences both photosynthesis and transpiration, thereby coupling the carbon and water cycles and affecting surface-atmosphere energy exchange. The environmental response of stomatal conductance has been measured mainly on the leaf scale, and theoretical canopy models are relied on to upscale stomatal conductance for application in terrestrial ecosystem models and climate prediction. Here we… More

in    0

Soil organic carbon (SOC) can be stabilized via association with iron (Fe) and aluminum (Al) minerals. Fe and Al can be strong predictors of SOC storage and turnover in soils with relatively high extractable metals content and moderately acidic to circumneutral pH. Here we test whether pedogenic Fe and Al influence SOC content and turnover… More

in    0