Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily—and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have… More

in    0

Ecosystem respiration (ER) was measured with the eddy covariance technique in 14 forest ecosystems in the Upper Great Lakes Region during the growing seasons of 2002 and 2003. The response of ER to soil temperature and moisture was analyzed using empirical models. On average, ER was higher in the intermediate and young than in the… More

in    0

Carbon dioxide fluxes were examined over the growing seasons of 2002 and 2003 from 14 different sites in Upper Midwest (USA) to assess spatial variability of ecosystem–atmosphere CO2 exchange. These sites were exposed to similar temperature/precipitation regimes and spanned a range of vegetation types typical of the region (northern hardwood, mixed forest, red pine, jack… More

in    0