There are few whole-canopy or ecosystem scale assessments of the interplay between canopy temperature and photosynthesis across both spatial and temporal scales. The stable oxygen isotope ratio (δ18O) of plant cellulose can be used to resolve a photosynthesis-weighted estimate of canopy temperature, but the method requires independent confirmation. We compare isotope-resolved canopy temperatures derived from… More

in    0

The 14CO2 composition of plant and soil respiration can be used to determine the residence time of photosynthetically fixed carbon before it is released back to the atmosphere. To estimate the residence time of actively cycled carbon in a temperate forest, we employed two approaches for estimating the Δ14CO2 of ecosystem respiration (Δ14C-Reco) at the… More

in    0

Ecosystem fluxes of energy, water, and CO2 result in spatial and temporal variations in atmospheric properties. In principle, these variations can be used to quantify the fluxes through inverse modelling of atmospheric transport, and can improve the understanding of processes and falsifiability of models. We investigated the influence of ecosystem fluxes on atmospheric CO2 in… More

in    0

Turbulent fluxes of carbon, water vapor, and temperature were continuously measured above an upland forest in north central Wisconsin during 1999 and 2000 using the eddy covariance method. Maple (Acer saccharum), basswood (Tilia americana), and green ash (Fraxinus pennsylvanica) species found in this forest also comprise a substantial portion of the landscape in the northern… More

in    0

Soil temperature and moisture influence soil respiration at a range of temporal and spatial scales. Although soil temperature and moisture may be seasonally correlated, intra and inter-annual variations in soil moisture do occur. There are few direct observations of the influence of local variation in species composition or other stand/site characteristics on seasonal and annual… More

in    0

The climate sensitivity of plant seasonal life cycles, or phenology, may impart significant carbon cycle feedbacks on climatic change. Analysis of interannual ecosystem carbon exchange provides one way to assess this climate sensitivity. Multiyear eddy covariance carbon dioxide flux observations from five different ecosystems (deciduous forest, northern hardwood mixed forest, old-growth forest, shrub wetland, and… More

in    0