Peatland drainage is an important driver of global soil carbon loss and carbon dioxide (CO2) emissions. Restoration of peatlands by re‐flooding reverses CO2 losses at the cost of increased methane (CH4) emissions, presenting a biogeochemical compromise. While restoring peatlands is a potentially effective method for sequestering carbon, the terms of this compromise are not well… More

in    0

Land use change and management affect climate by altering both the biogeochemical and biophysical interactions between the land and atmosphere. Whereas climate policy often emphasizes the biogeochemical impact of land use change, biophysical impacts, including changes in reflectance, energy partitioning among sensible and latent heat exchange, and surface roughness, can attenuate or enhance biogeochemical effects… More

in    0

Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily—and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have… More

in    0

Water is a limited and valuable resource in California. A large proportion of the fresh water for southern California is supplied by the Sacramento and San Joaquin rivers. With recent efforts to restore large areas of land in the Sacramento–San Joaquin Delta region from farmland to managed wetlands, it is important to investigate the effect… More

in    0

Corrections accounting for air density fluctuations due to heat and water vapour fluxes must be applied to the measurement of eddy-covariance fluxes when using open-path sensors. Experimental tests and ecosystem observations have demonstrated the important role density corrections play in accurately quantifying carbon dioxide ( CO 2 ) fluxes, but less attention has been paid… More

in    0

Wetlands have the ability to accumulate large amounts of carbon (C), and therefore wetland restoration has been proposed as a means of sequestering atmospheric carbon dioxide (CO2) to help mitigate climate change. There is a growing interest in using the C services of wetlands to help reduce habitat loss and finance restoration projects. However, including… More

in    0

Wetlands and flooded peatlands can sequester large amounts of carbon (C) and have high greenhouse gas mitigation potential. There is growing interest in financing wetland restoration using C markets; however, this requires careful accounting of both CO2 and CH4 exchange at the ecosystem scale. Here we present a new model, the PEPRMT model (Peatland Ecosystem… More

in    0

Wetland restoration can mitigate aerobic decomposition of subsided organic soils, as well as re-establish conditions favorable for carbon storage. Rates of carbon storage result from the balance of inputs and losses, both of which are affected by wetland hydrology. We followed the effect of water depth (25 and 55 cm) on the plant community, primary production,… More

in    0

Wetland methane transport processes affect what portion of methane produced in wetlands reaches the atmosphere. We model what has been perceived to be the least important of these transport processes: hydrodynamic transport of methane through wetland surface water and show that its contribution to total methane emissions from a temperate freshwater marsh is surprisingly large…. More

in    0