Aerodynamic canopy height (ha) is the effective height of vegetation canopy for its influence on atmospheric fluxes and is a key parameter of surface‐atmosphere coupling. However, methods to estimate ha from data are limited. This synthesis evaluates the applicability and robustness of the calculation of ha from eddy covariance momentum‐flux data. At 69 forest sites,… More

in    0

Combining sap flux and eddy covariance measurements provides a means to study plant stomatal conductance and the relationship between transpiration and photosynthesis. We measured sap flux using Granier-type sensors in a northern hardwood-dominated old growth forest in Michigan, upscaled to canopy transpiration, and calculated canopy conductance. We also measured carbon and water fluxes with the… More

in    0

The climate sensitivity of plant seasonal life cycles, or phenology, may impart significant carbon cycle feedbacks on climatic change. Analysis of interannual ecosystem carbon exchange provides one way to assess this climate sensitivity. Multiyear eddy covariance carbon dioxide flux observations from five different ecosystems (deciduous forest, northern hardwood mixed forest, old-growth forest, shrub wetland, and… More

in    0

Carbon dioxide fluxes were examined over the growing seasons of 2002 and 2003 from 14 different sites in Upper Midwest (USA) to assess spatial variability of ecosystem–atmosphere CO2 exchange. These sites were exposed to similar temperature/precipitation regimes and spanned a range of vegetation types typical of the region (northern hardwood, mixed forest, red pine, jack… More

in    0

Ecosystem respiration and its components are sensitive to age, species, stand structure, and environmental conditions, and substantially influence net ecosystem productivity. We measured ecosystem respiration and component respiration including soil, woody debris, stem and leaf respiration in old-growth hardwood-dominated and hemlock-dominated stands in northern Michigan, USA in 2002 and 2003. Respiration was mainly controlled by… More

in    0

Old-growth forests are often assumed to exhibit no net carbon assimilation over time periods of several years. This generalization has not been typically supported by the few whole-ecosystem, stand-scale eddy-covariance measurements of carbon dioxide exchange in old-growth forests. An eddy-flux tower installed in a >300-year-old hemlock–hardwood forest near the Sylvania Wilderness, Ottawa National Forest, MI,… More

in    0