Hydraulic redistribution (HR) of water via roots from moist to drier portions of the soil occurs in many ecosystems, potentially influencing both water use and carbon assimilation. By measuring soil water content, sap flow and eddy covariance, we investigated the temporal variability of HR in a loblolly pine (Pinus taeda) plantation during months of normal… More

in    0

Timber harvests remove a significant portion of ecosystem carbon. While some of the wood products moved off-site may last past the harvest cycle of the particular forest crop, the effect of the episodic disturbances on long-term on-site carbon sequestration is unclear. The current study presents a 25 year carbon budget estimate for a typical commercial loblolly… More

in    0

Deep root water uptake and hydraulic redistribution (HR) have been shown to play a major role in forest ecosystems during drought, but little is known about the impact of climate change, fertilization and soil characteristics on HR and its consequences on water and carbon fluxes. Using data from three mid-rotation loblolly pine plantations, and simulations… More

in    0

The study examined the relationships between whole tree hydraulic conductance (Ktree) and the conductance in roots (Kroot) and leaves (Kleaf) in loblolly pine trees. In addition, the role of seasonal variations in Kroot and Kleaf in mediating stomatal control of transpiration and its response to vapour pressure deficit (D) as soil-dried was studied. Compared to… More

in    0

During 2005–2007, we used the eddy covariance and associated hydrometric methods to construct energy and water budgets along a chronosequence of loblolly pine (Pinus taeda) plantations that included a mid-rotation stand (LP) (i.e., 13–15 years old) and a recently established stand on a clearcut site (CC) (i.e., 4–6 years old) in Eastern North Carolina. Our… More

in    0

Increasing variability of rainfall patterns requires detailed understanding of the pathways of water loss from ecosystems to optimize carbon uptake and management choices. In the current study we characterized the usability of three alternative methods of different rigor for quantifying stand-level evapotranspiration (ET), partitioned ET into tree transpiration (T), understory transpiration, interception, and soil evaporation… More

in    0