The phenological response of vegetation to ongoing climate change may have great implications for hydrological regimes in the eastern United States. However, there have been few studies that analyze its resultant effect on catchment discharge dynamics, separating from dominant climatic controls. In this study, we examined the net effect of phenological variations on the long‐term… More

in    0

The phenological response of vegetation to ongoing climate change may have great implications for hydrological regimes in the eastern United States. However, there have been few studies that analyze its resultant effect on catchment discharge dynamics, separating from dominant climatic controls. In this study, we examined the net effect of phenological variations on the long‐term… More

in    0

Humans have altered the global and regional cycles of nitrogen more than any other element. Alteration of N cycling patterns and processes in forests is one potentially negative outcome of accelerated N deposition worldwide. To assess potential impacts of N deposition on temperate forests, a series of chronic nitrogen additions in two contrasting forest types… More

in    0

Abandonment and reforestation of agricultural lands has been a major influence on the landscape of eastern North America. Cultivation and soil amendments can dramatically alter soil nutrient pools and cycling, yet few studies have examined the long-term (>50 yr) influence of pasturing and cultivation on soil processes in the forests that develop after abandonment. Twelve… More

in    0

We examine the atmospheric budget of CO2 at temperate continental sites in the Northern Hemisphere. On a monthly time scale both surface exchange and atmospheric transport are important in determining the rate of change of CO2 mixing ratio at these sites. Vertical differences between the atmospheric boundary layer and free troposphere over the continent are… More

in    0

Future climate change is expected to affect ecosystem-atmosphere CO2 exchange, particularly through the influence of temperature. To date, however, few studies have shown that differences in the response of net ecosystem CO2 exchange (NEE) to temperature among ecosystems can be explained by differences in the photosynthetic and respiratory processes that compose NEE. Using a new… More

in    0