Aerodynamic canopy height (ha) is the effective height of vegetation canopy for its influence on atmospheric fluxes and is a key parameter of surface‐atmosphere coupling. However, methods to estimate ha from data are limited. This synthesis evaluates the applicability and robustness of the calculation of ha from eddy covariance momentum‐flux data. At 69 forest sites,… More

in    0

It is necessary to partition eddy covariance measurements of carbon dioxide exchange into its offsetting gross fluxes, canopy photosynthesis, and ecosystem respiration, to understand the biophysical controls on the net fluxes. And independent estimates of canopy photosynthesis (G) and ecosystem respiration (R) are needed to validate and parametrize carbon cycle models that are coupled with… More

in    0

Tower and aircraft data from a number of field studies are analyzed to: (1) estimate the roughness lengths for local and area-averaged momentum fluxes over various surface types; (2) examine the applicability of the ψ-stability formulations of Paulson and Dyer for momentum fluxes; (3) investigate the possibility that tower flux measurements over tall vegetation are… More

in    0

Using a helicopter-mounted portable spectroradiometer and continuous eddy covariance data we were able to evaluate the photochemical reflectance index (PRI) as an indicator of canopy photosynthetic light-use efficiency (LUE) in four boreal forest species during the Boreal Ecosystem Atmosphere experiment (BOREAS). PRI was calculated from narrow waveband reflectance data and correlated with LUE calculated from… More

in    0

We compared vertical gradients in leaf gas exchange, CO2 concentrations, and refixation of respired CO2 in stands of Populus tremuloides Michx., Pinus banksiana Lamb. and Picea mariana (Mill.) B.S.P. at the northern and southern boundaries of the central Canadian boreal forest. Midsummer gas exchange rates in Populus tremuloides were over twice those of the two… More

in    0

Forest biomes are major reserves for terrestrial carbon, and major components of global primary productivity. The carbon balance of forests is determined by a number of component processes of carbon acquisition and carbon loss, and a small shift in the magnitude of these processes would have a large impact on the global carbon cycle. In… More

in    0

Interdisciplinary field experiments for global change research are large, intensive efforts that study the controls on fluxes of carbon, water, trace gases, and energy between terrestrial ecosystems and the atmosphere at a range of spatial scales. Forest ecophysiology can make significant contributions to such efforts by measuring, interpreting, and modeling these fluxes for the individual… More

in    0

Measurements of the fluxes of latent heat λE, sensible heat H, and CO2 were made by eddy covariance in a boreal black spruce forest as part of the Boreal Ecosystem-Atmosphere Study (BOREAS) for 120 days through the growing season in 1994. BOREAS is a multiscale study in which satellite, airborne, stand-scale, and leaf-scale observations were… More

in    0